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Abstract

Robotics toolkits and physical computing devices have been used in
educational settings for many decades. Based on a techno-historical
analysis of the development of 30 years of development of these devices,
this monograph examines their design principles and presents a frame-
work for the analysis and future design, based on the analytic construct
of “selective exposure,” which examines what is foregrounded or back-
grounded in hardware and software design. Selective exposure has two
sub-dimensions: usability, which examines how the material communi-
cates rules for its use, and power, which looks at how cognitive and
physical operations are mapped to each other, and how the design can
make these connections more explicit. I show how these dimensions
crucially impact what children can achieve with these materials, and
make the case for the design of toolkits in synchrony with the childSs
developmental trajectory.
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Introduction

Archeologists can reconstruct a dinosaur from fragments of a bone,
and biologists can infer the Earth’s temperature millions of years ago
by examining fragments of fossil DNA. Technology historians have also
looked at details of simple machines over the millennia as a proxy for
the technological level of different civilizations. Semiotics, a “science
of detectives,” infers larger meaning by looking at details in language,
gesture, or prosody Blikstein| [1993]. When we do not have access to
the entire object, but need to understand the beast, we create indirect
ways to complete the puzzle. In this monograph, my goal is to histori-
cally and technologically analyze physical computing devices designed
for children, derive categories of design decisions, and create theoret-
ical and design frameworks to guide designers and researchers. This
is timely, given the growing presence of these devices in formal and
informal education.

The presence of several types of physical computing and robotics
devices in educational settings is attributable to many research and
design initiatives of the past 30 years. However, although the design of
such devices has evolved significantly and their popularity has grown
wildly, there is little research that examines this technology taking into



account their history and the theoretical underpinning that guided
their design.

But before delving into these frameworks and devices, it is cru-
cial to understand a few of the educational ideas that guided the pio-
neers in this field. As we will see throughout this monograph, much of
the inspiration and early work came from Seymour Papert’s research
group at the MIT Media Laboratory. Before coming to MIT, Papert
had worked with Jean Piaget, who was the proponent of Construc-
tivism, a very influential theory of human cognition and development.
One of the important ideas in Piaget’s model is that for a child to
abandon a current theory about the world, it takes more than simply
being exposed to a better one. The new theory has to emerge from
students’ complex experiences and actions in the world. Papert added
to this theory the idea that this happens more robustly if the learner
is engaged in building a public, shareable “object,” such as a robot
or a computer program |Papert, [1980] — and called his new variation
“Constructionism.” In other words, Papert was very concerned with not
only how to promote sophisticated ways for children to interact with
the world (for new knowledge to emerge) but also in making sure that
they had at their disposal rich materials and toolkits to build those
sharable objects. Therefore, much of Papert’s group work was about
theorizing about how to create toolkits, programming languages, and
other materials for children.

Papert opens his most influential book, Mindstorms [Papert), [1980],
with an essay about the “gears of his childhood,” in which he talks
about how his own experience playing with gears and differentials as
a young child generated a deep affective connection with multiplica-
tion tables, equations, and mathematics in general: “By the time I
had made a mental gear model of the relation between x and y, fig-
uring how many teeth each gear needed, the equation had become a
comfortable friend.” Papert’s computational toolkits ultimately intend
to create these same connections in new domains such as engineering,
robotics, and cybernetics:

“A modern-day Montessori might propose, if convinced by
my story, to create a gear set for children. But to hope for
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this would be to miss the essence of the story. I fell in love
with the gears. This is something that cannot be reduced
to purely “cognitive” terms. Something very personal hap-
pened. [...] My thesis could be summarized as: What the
gears cannot do the computer might. The computer is the
Proteus of machines. Its essence is its universality, its power
to simulate. Because it can take on a thousand forms and
can serve a thousand functions, it can appeal to a thousand
tastes. This book is [my attempt] to turn computers into
instruments flexible enough so that many children can each
create for themselves something like what the gears were
for me.” [Papert, |1980]

One contribution of the current work is to identify whether and in
what ways, and along what dimensions, designers of physical computing
toolkits can use the principles of Constructionism in their own work.

I start the monograph by reviewing the history of microcontrollers
and robotics in education, comment on their design principles and
forms of interaction, and propose a set of analytic constructs to inter-
pret design decisions. Using these constructs, I more deeply analyze
representative examples to understand their affordances and usability,
and finally I propose principles for theoretically-guided design. The the-
ory I propose addresses three under-researched issues in the literature
and design about the design of robotic toolkits:

(1) What are the levels of abstraction exposed to students and what
interactions do they afford?

(2) What are the direct connections between specific design decisions
and the learning goals intended for each toolkit?

(3) How should toolkits be considered as part of a larger develop-
mental trajectory?

To address these questions, I first divide the history of these
technologies into five generations, spanning 30 years of research and
development. I then propose a categorization based on the design com-
mitments and principles of these five generations of devices, employing



the analytic construct of “selective exposure,” which examines what is
foregrounded or backgrounded in hardware and software design (this
construct will be fully explained in Section . Selective exposure has
two sub-dimensions. Selective exposure for usability examines how the
material communicates rules for its use — in other words, how the
design embeds error correction schemes (for example, self-correcting
polarity errors). Selective exposure for power looks at how cognitive
and physical operations are mapped to each other, and how the design
can make these connections more explicit so that users can exploit
the full potential of the toolkits (for example, parts can be designed
to explicitly show a hierarchy). Thus, selective exposure for usability
guarantees a low-threshold for users to quickly start building, and selec-
tive exposure for power assures a high-ceiling by indicating through the
design the more complex possibilities offered by the toolkit. Finally, 1
propose the idea of selective unveiling, a design principle which advo-
cates the progressive exposure of layers of abstraction in synchrony
with the developmental trajectory of children.

I hope that this discussion might move forward a research agenda
that exposes children to the powerful ideas in several disciplines
through physical computing, leading to better, more theoretically-
informed designs.
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The Story of Microcontrollers in Education:
Five Generations

Since often generations of physical computing platforms developed in
parallel, I will have to go back and forth in time a few times to describe
each of them. The reader will notice that there is a chronological overlap
in the story of these platforms, but hopefully by the end of the narrative
the “big picture” will be clear.

Tim McNerney was one of the first to narrate the early chapters of
this story [McNerney, 2004], which as many in the field of technologies
for education, starts with the Logo programming language. Since the
late 1960s, researchers have shown that not all programming languages
are created equal Papert| [1980]. Logo has had a significant impact on
K-12 education because it was the first expressive, student-centered
educational technology to be widely adopted by the mainstream edu-
cational system, and it was created according to theoretically-inspired
design principles. Based on these principles, Papert and collaborators
[Papert et al., 2001] made a strong case for why the BASIC program-
ming language — then the de facto standard in personal computers —
was not an appropriate design, and why there was a need for languages
designed specifically for children. They argued that media matters:
in other words, the particular properties of the constructive building



blocks offered to children limit or enhance what they can build, create,
and ultimately learn. In particular, they made an important distinction
between understanding the inner workings of a technology and the con-
tent that we want children to learn through the use of that technology.
For example, Papert was interested in Logo as a way for children to
learn the powerful ideas at work in mathematics and computer science
(for example, differential geometry and recursion) and not how the
computer’s memory was being managed by the operating system, or
how the transistors were wired inside the microprocessor. The history
of Logo and, more recently, of the Scratckﬂ and NetLogcﬂ programming
environments shows how such design principles are crucial for a pow-
erful, sustained, and deep engagement by children with technological
tools that continues beyond the novelty effect.

The development of programming languages for children soon
inspired the creation of programmable tangibles that would bring cod-
ing to the physical world. These developments have occurred in five
waves or generations:

(1) The first generation of tangible physical computing devices
emerged in the 1980s and early 1990s with the development of
the LEGO/Logo platform and the many generations of “pro-
grammable bricks” by researchers at the Massachusetts Institute
of Technology’s Media Lab (for example, Crickets, Lego/LOGO,
Lego Mindstorms).

(2) The second generation of devices was developed in the late 1990s
and extended the capabilities of these early platforms by includ-
ing new types of sensors, actuators, and ways to interact with
computers, as well as programmable boards targeted to hobbyists
and interaction designers (for example, BASIC Stamp, Wiring,
Arduino).

(3) The third generation of these devices was developed in the early
years of the 21st Century and sought not simply to extend
the capabilities of earlier platforms, but additionally placed a

"http://scratch.mit.edu
Zhttp://ccl.northwestern.edu/netlogo,/
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particular emphasis on creating devices that would broaden par-
ticipation in computing and allow users to access new domains of
knowledge. Platforms developed during this period were specifi-
cally designed to target new classes of users, such as very young
children, non-technical designers, and children in the developing
world. Other platforms used a modular approach to design as a
way to open up possibilities for exploring complex concepts in
mathematics and science.

(4) The latter half of the 2000s saw a fourth generation of devices that
brought new form factors, new architectures, and new industrial
design, embedding computational capacity at the level of the com-
ponents, enhancing the capabilities of older platforms and further
broadening the reach of physical computing to new audiences (for
example, Topobo, Cubelets).

(5) A fifth generation of devices started to gain traction with the
launch of the Raspberry Pi board in 2012 — a full computer
packed into a credit-card sized board for the same price as a
regular microcontroller-based board, opening up new possibilities
for physical computing in education (for example, Raspberry Pi,
Beagle Board).

2.1 The first generation: Pioneers of physical computing
(LEGO/Logo, Braitenberg Bricks, and Programmable
Bricks)

One of the very early pioneers of physical computing for children was
Radia Perlman, who went on to become a very well-known software
engineer and inventor. While still in her early twenties, from 1974 to
1976, Radia worked with Seymour Papert at the MIT Artificial Intel-
ligence Lab and created what is believed to be the first system that
enabled children to program with physical blocks: TORTIS [Perlman),
1974] (Toddler’s Own Recursive Turtle Interpreter System.) Radia was
able to get children as young as 31/2 years old to program using her
system, which had blocks to give robots direct commands, and a “slot
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Figure 2.1: Radia Perlman’s TORTIS “slot machine” — the part of her system
which enable children to write procedures.

machine” (Figure [2.1)) that allowed children to write, store and execute
procedures. Around the same time, two other systems were being devel-

oped at MIT: FASTR [Goldenberg, [1974] and TEACH [Solomon and|

1975], which used single keystrokes to program instead of mak-
ing children type the full text — however, their tangible components

were much less developed.

After a few years, Mitchel Resnick, Fred Martin, and Stephen Ocko
began pioneering work on LEGO/Logo began in the 1980s, at the MIT
Media Lab. LEGO/Logo (see Figure was a computer-based learn-
ing platform that combined LEGO construction with the Logo pro-
gramming language. Children built machines out of traditional LEGO
pieces as well as new bricks designed specifically for the Logo platform,
which included gears, motors, and sensors. They could then program
their constructions. Much of this work was also inspired by Martin’s
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Figure 2.2: The first programmable turtles (top left and top center, circa early
1970s), Seymour Papert and one programmable turtle (top right, 1980s), and the
first prototypes of the MIT Programmable Bricks (bottom): counterclockwise, MIT
Logo Brick (1987), MIT Red Brick (1995), LEGO® RCX™ Brick (1998) [Martin|

1959).
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work with robotics competitions at MIT, which pioneered these types
of competitions in engineering schools [Martin, [1988|. At the time,
LEGO/Logo represented a return to Logo’s roots. Logo was used orig-
inally to program a robotic turtle, but the second generation of Logo
environments took advantage of the advent of personal computing and
shifted to screen turtles from the previous mechanical version.

The physical turtle inspired the development of Logo — the story
came full circle with the development of programmable tangibles —
LEGO/Logo brought the physical turtle back to tangible form [Resnick
et al., (1996, Resnick and Ockol [1991].

The MIT team ran several successful workshops in the early 1990s
and attributed the platform’s success to the fact that it put children in
control, offered multiple paths to learning, and encouraged the building
of a sense of community. However, there were still some important
limitations, including the fact that LEGO/Logo creations had to be
tethered to personal computers in order for them to work, a serious
issue when children wanted to create mobile creatures — in other words,
there was not yet an autonomous Lego robotics brick which could store
and execute programs.

Limitations aside, the platform enabled children to learn power-
ful ideas through design and about design [Resnick et al., [1996]: In
LEGO/Logo, children were “actively involved in creating and con-
structing meaningful products” [Resnick and Ocko, 1991], and learned
about mathematical and scientific ideas as well as the design process
itself [Shaffer and Resnick, |1999]. LEGO/Logo was later released as a
commercial product through the LEGO Group and enjoyed tremen-
dous success, even though it was only sold to schools. In the mid-
1990s, the platform was being used in more than a dozen countries,
including 15,000 elementary and middle schools in the United States
[Resnick and Ockol [1991]. This success inspired further work on the first
generation of computationally enhanced construction kits. The earliest
extensions of the LEGO/Logo platform addressed a major limitation:
cables. A new version, the “Logo Brick,” used a 6502 processor, the
same that powered Apple II computers one decade earlier. Another
innovation, the “Braitenberg Brick” system, developed primarily by
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Fred Martin, represented a serious conceptual modification. Martin’s
system included LEGO bricks with embedded electronics, instead of
relying on specially designed electronic bricks used in conjunction with
traditional LEGO bricks. The resulting system consisted of a set of
“low-level logic bricks” [Resnick et al., [1996] that children could wire
together to create different behaviors. The limitation here was that
each brick had a dedicated function, so many of them were needed for
more complex projects.

Another design, the Programmable Brick, overcame this limita-
tion by embedding a fully programmable computer into a LEGO brick
[Resnick et al.,[1996]. This design also took advantage of key technologi-
cal advances; for example, it had faster processing power, more memory,
and a variety of input—output possibilities. It also supported infrared
communications, had an LCD display, and included buttons for basic
operations such as selecting and running programs. It is significant that
the Programmable Brick Project found itself at the convergence of two
trends that were prominent during the early 1990s in research on com-
puters and children: constructionism and ubiquitous computing. This
convergence would have some key design implications. It is important
to note that the dominant paradigm in computing up until that time
was that “computing” takes places in front of a computer. However, the
goal of ubiquitous computing was to spread computation throughout
environments and to embed it in all types of objects and artifacts. The
Programmable Brick extended the idea of distributing computational
power but, for the first time, aimed the work explicitly at children.
Studies with children at the time revealed three broad categories of
application: children could use the Programmable Brick to make their
environments come alive, to program autonomous creatures, and to
conduct new types of scientific experiments |[Resnick et al., 1996]. The
Programmable Brick’s proponents claimed that it was not just a “thing
that thought” — it actually acted as a “thing to think with.”

This historical account is important for few reasons. First, it shows
the intellectual roots of the first generation of devices. These designers
were deeply embedded in a constructivist/constructionist /educational
research culture, so their main motivation was to give powerful
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expressive tools to children to see how they would use them. In the best
tradition of constructivism and developmental psychology, these schol-
ars were not interested in turning children into engineering prodigies
or in increasing enrollment in engineering schools, or even in preparing
students for careers in STEM. Rather, they were interested in seeing
how these new tools would change how all children expressed their ideas

1991], and not only the more technically inclined.

2.2 The second generation: Conquering the World (Crickets,
Programmable Bricks, and BASIC Stamp)

2.2.1 The MIT Cricket and its first descendants

The work that took place in the 1980s and early 1990s set the stage for
the flurry of “things to think with” developed in the later half of the
1990s. Many of these products were updates and extensions of earlier
models. For example, LEGO Mindstorms (Figure was introduced
in 1998 with improvements that made it well suited for those who

Figure 2.3: LEGO RCX Brick.
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wanted to build mobile robots, although not, at that time, for those
who wished to create artistic objects involving light, sound, and music.

The team also worked on other devices as well. More specifically,
they designed a new class of toys that would “expand the range of con-
cepts kids [could] explore through direct manipulation” [Resnick et al.
1998]. By embedding computation into traditional toys like blocks,
beads, balls, and badges, they attempted to leverage children’s famil-
iarity with those toys to introduce a new capability that would expose
them to new ideas. Unlike the earlier LEGO/Logo implementation,
these toys were autonomous. At the time, digital manipulatives were
not a novel idea, but this new class of toys did allow children to explore

new concepts such as dynamic systems [Resnick et al., |1998[]E|
The Cricket platform (Figure, a variation of the Programmable
Brick, emerged in the late 1990s. It was a general purpose, handheld,

Figure 2.4: The MIT Cricket.

3Resnick et al. define digital manipulatives as “computationally-enhanced ver-
sions of traditional children’s toys [...] these new manipulatives — with compu-
tational power embedded inside — are designed to expand the range of concepts
that children can explore through direct manipulation, enabling children to learn
concepts that were previously considered too advanced.” [Resnick et al. [1998].
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low-cost, fully programmable computer designed specifically for use
in science and engineering education, and influenced by a number of
related traditions, including research on home science, design educa-
tion, microcomputer-based lab activities, and children’s programming
[Resnick et al. [2000]. It had two input and two output ports, and com-
municated with the computer through an infrared base. All connectors
were polarized, so that children could not connect them in the wrong
way. Also in the tradition of the LEGO Brick, the Cricket had on-board
motor drivers and batteries, making it an all-in-one solution for sensing
and robotics. The sensors and motors that came with the toolkit were
also carefully chosen and designed for ease of use and compatibility,
and no additional components were necessary to connect them. The
Cricket used a special version of the Logo language for programming,
called Cricket Logo.

The most important catalyst in the development of the Cricket was
the MIT Research Group’s continued belief that science instruction
dominated by direct instruction and lab activities was ineffective, and
that children needed the opportunity to engage in real-world science
[Resnick et al., 2000]. However, logistical challenges existed for teachers
who wanted to set up Cricket-based activities: in the late 1990s and
early 2000s, computers in classrooms were still few, slow, and unstable,
installing device drivers was obtuse, and configuring serial ports (when
they were available at all) was challenging. The idea of children doing
robotics and physical computing in schools was also very new, and there
were no good formats to fit this new type of activity into the school
day. Given all of these limitations, the MIT Research Group’s initial
calls for widespread Cricket integration into school settings eventually
gave way to calls for “systemic change in the logistical and concep-
tual organization of schooling” [Resnick et al., 2000]. These setbacks,
more than a failure of the platform, pointed towards the difficulties in
introducing a very different type of technology in classrooms, which
was open-ended and mobile, requiring very different types of classroom
facilitation and infrastructure. Still, the platform was quite successful
in afterschool environments — in the US, it was implemented in 20
science museums, and more internationally.
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Figure 2.5: The Tangible Computation Bricks (left) and one of McNerney’s con-
ceptual prototypes: a “train” carrying a program of bricks (right). The idea was to
have multiple “rules” or “methods” that controlled the train’s behavior.

The Cricket set the standard for a whole new generation of devices
during the following ten years. It spurred the development of other
notable handheld microcontrollers, including the Handy Board [Martin

2000] and the Tangible Computation Brick (Figure [McN-
2000|. Inspired by the Braitenberg Blocks, McNerney took the
Cricket design in a new direction by creating a tangible programming

interface that allowed children to stack bricks together in different con-
figurations to elicit specific behaviors.

This project was the second attempt at designing modular block
systems as opposed to fully programmable ones, but soon the typical
limitations of such modular systems became clear: the bricks only
stacked in one direction. Some argued that the stacking constraint
limited expression and asked for branching and two-dimensional
structures [McNerney, 2000]. Another similar type of design, this

time geared towards very young children, was proposed by Peta and
Gordon Wyeth — the Electronic Blocks [Wyeth and Wyeth, [2001].
Given the limitations and the difficulties in manufacturing, the project

did not reach a large number of users, and the group decided to go

back to fully programmable systems |[Martin, 2013]. These platforms,
however, opened up a new realm of design, which would inspire many

researchers several years later when microcontrollers became more
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capable, and sensors, actuators, and mechanical parts were much
cheaper and more reliable.

2.2.2 A new dynasty is born: The BASIC Stamp, Stanford’s board

We need now to go back in time to tell the story of a new category
of boards that developed in parallel. In the early 1990s, a novel lin-
eage of devices appeared: the BASIC Stamp board came out of a small
electronics prototyping company named Parallax in 1992. However, the
product was intended for quite a different clientele: it catered to hobby-
ists and engineers, and its designers had few connections to academic
research or education. The BASIC Stamp was a microcontroller-based
board with sensors and outputs, using a proprietary programming lan-
guage based on BASIC. Many models were launched in the following
years, and the platform was quite successful, selling millions of units.
Until the wide popularization of Arduino-like platforms, Parallax was
the key commercial vendor of programmable boards for hobbyists. The
design choices, however, were quite different. The language was more
powerful but much more complex. Furthermore, connecting devices to
the board required external components and soldering. The BASIC
Stamp did not follow the “Cricket” hardware model; it exposed one
extra hardware layer that up to that point had been invisible to users:
the pins of the microcontroller. This was a radically different design
principle. The design of the boards, which was based on the popu-
lar PIC microcontrollers, was elegant and built to meet the needs of
the hobbyist community at the time, mostly comprised of electron-
ics aficionados and engineering students. However, the BASIC Stamp
was not an all-in-one solution, and lacked built-in components to drive
motors and receive sensor values. It was essentially a breakout board
for the microcontroller itself, giving users full access to its pins and
functionality. The history of the Basic STAMP, as it is told on the
Parallax Website, confirms the target audience: “BASIC Stamp micro-
controller was the tool they [the founders of Parallax] needed to do
their own hobby projects. It let ordinary people program a microcon-
troller for the first time [...] the user base was tremendously diverse
[and included] scientists and hobbyists to engineers and entrepreneurs.”
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The meaning of “tremendously diverse” here is quite different from the
idea of diversity held by the creators of the Crickets. As we will discuss
later in this monograph, these design differences, as well as the radical
difference on the intended audience, had profound implications on how
children would end up using these devices.

About a decade after the BASIC Stamp, researchers at Stanford
working with interactive technologies and music at the Center for Com-
puter Research in Music and Acoustics (CCRMA), such as Bill Ver-
plank and Pascal Stang [Wilson et al., 2003], felt the need to offer a
better hardware platform for their students who were building a vari-
ety of interactive music devices in undergraduate and graduate classes.
Unhappy with the current platforms, they made a new design choice
with important consequences: they switched to using AVR chips and
built their own microcontroller board, which was the origin of the
Arduino platform. In a publication in 2003, they justify their choice
in this way:

“

. why not give students a black box that does 8 chan-
nels of A/D conversion [instead of using microcontrollers|?
The short answer is pedagogical. Using a programmable
microcontroller allows the students to learn about computer
architecture, digital logic, programming, A/D conversion
and serial and parallel communication protocols. [...] It
gives students exposure to the technology used in actual
commercial products, demystifying the world of embedded
systems. In this respect, the switch to the AVR has been
significant. It represents a shift from essentially a hobbyist’s
toolkit to professional, commercial-grade technology that is
much closer to the technology used in a wide variety of exist-
ing commercial devices. [...] Admittedly, using a microcon-
troller, and specifically the AVR, creates more work for the
students [...] The platform’s infrastructure [...] gives the
advanced student full ‘under-the-hood’ access to a set of
well-established, industry standard tools.” [Wilson et all
2003]
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Essentially, their realization was that their population of students had
certain important learning goals (computer architecture, digital logic,
programming), and that using technologies closer to the basic micro-
controller level would be beneficial, even though it would require more
specialized training. This type of goal is much different than the goals
of the designers of the Cricket or Lego/LOGO platforms. However, this
crucial difference in learning goals was lost in translation when these
AVR-inspired devices (such as Arduino) became wildly popular in edu-
cational settings /Y]

2.3 The Third Generation: Broadening Participation and
Accessing New Knowledge Domains (GoGo Board,
Phidgets, Wiring, and Arduino)

Microcontroller kits designed in the early years of the new millennium
continued to build on earlier designs. However, the literature suggests
a growing focus by the research community on designing devices that
would broaden participation in computing and allow access to new
domains of knowledge. In other words, new designs emerged to better
expose new groups to powerful experiences in computing, as well as
to create kits to enable children to explore concepts previously con-
sidered too advanced. Curlybot, the MetaCricket, Phidgets, and the
GoGo Board all spoke to the former concern, while the MIT Tower
focused on the latter.

Curlybot was a digital manipulative developed at the MIT Media
Lab for children ages four and older. Frei and his colleagues designed
Curlybot in response to several issues. At the time, many digital manip-
ulatives were being designed for middle and high-school children, but
not for children as young as four. Furthermore, many of the computa-
tional environments that had been designed for children were limited
to screen based interactions [Frei et al.,2000]. In order to address these
issues, the team created a digital manipulative that was programmed

4The AVR platform had one decisive advantage over the PIC platform: a free,
comprehensive, widely-supported compiler. The official PIC compiler was not free.
Some researchers and engineers attribute the current dominance of the AVR plat-
form to the existence of a free C compiler.
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by example. Users would perform actions with CurlyBot, which would
be recorded and later “played back.” This innovation would later inspire
the designers of other systems, such as Topobo (see Section .

Another Cricket offshoot, the MetaCricket was a hardware and
software construction kit designed to make rapid prototyping of
computationally-enhanced devices easier for non-engineers. In order
to lower the barrier of entry for designers, Martin and his colleagues
extended the Cricket design |[Martin et al., |2000] by adding a collec-
tion of small bus devices that could communicate with the core Cricket
device. Before the MetaCricket, users would need to create a plurality
of crickets for different purposes (display, music, and so on). Now all
of the circuitry was bundled onto the device itself and could be daisy-
chained off the bus of the class cricket. This same design idea was later
utilized for the Arduino “shields.”

The University of Calgary’s Phidgets project [Greenberg and Fitch-
ett}, 2001 (Figure created “physical widgets” designed to make it
easier for designers and programmers to develop physical interfaces.
They were not designed to be used by children, but to be the tangible
equivalent of screen widgets, the easily reusable building blocks that
software designers use to build user interfaces. Greenberg and Fitchett
were motivated by a similar problem that the BASIC Stamp sought to
address. They wanted designers to spend more time on actual physical
interface design and less on low-level electronics design so that their
physical widgets could be inserted more readily into physical interfaces
to make prototyping easier. Their design was effective and widely suc-
cessful, and very soon it became commercially available. In terms of
design, they followed the “Cricket” model, with an extra software layer
that backgrounded much of the microcontroller’s inner workings and
exposed sensors and actuators in a much simpler way. The Phidgets
were a step up in terms of hardware usability — no soldering was neces-
sary, and users did not have to deal with off-the-shelf electronic compo-
nents. The boards had easy to use, polarized connectors, and included
in the kit were specially designed sensor boards, which were automat-
ically detected by the system. Software plugins were developed for all
the major programming languages then available. However, Phidgets
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had the same transparency flaws (both were not open source) as the
BASIC Stamp and had no central processing power of their own; the
hardware system had to be connected to a computer at all times.

In 2001, a new Cricket-inspired design was generated, this time
intended for learners in developing countries. According to Sipitakiat,
Blikstein, and Cavallo, microcontroller kits were simply not accessi-
ble to much of the developing world, and even less so in schools. Pro-
grammable bricks were expensive, hard to find, and only well resourced
schools and organizations could afford them. The team wanted to
develop a variant of the programmable brick that would be low-cost,
open source, and easily assembled with simple tools. Their solution,
the GoGo Boardﬂ (Figure , could be assembled on-site by the user
at a very low-cost, and they made sure that all the components would
be available in electronics stores and markets in major cities of devel-
oping countries, including Brazil, Mexico, and Thailand. The printed
circuit board was single-sided and had large traces, making its “arti-
sanal” production possible. The approach was innovative for a number
of reasons. First, it made the kit more affordable because assembly (and
repair) could be done locally, even by the children themselves. Second,
it made its consumers into producers, and the authors observed a great
sense of agency and ownership among the children and teachers who
assembled their own robotics boards. Third, the board was the first
such project to offer two operational modes, autonomous and tethered,
extending the functionality of programmable bricks even further. The
tethered mode supported several programming languages, including
Microworlds Logo, Java, C/C++, and NetLogo, which gave the GoGo
Board the ability to use a computer’s superior processing power for
experiments and interactive systems. For the first time, children could
make screen elements move using physical sensors and make actuators
turn on and off as a result of computer instruction. Another important
contribution of the GoGo Board was that it allowed for the extensive
use of found and broken materials: the hardware was designed to be
tolerant of non-standard connectors, motors, and sensors [Sipitakiat
and Blikstein, 2010, [Sipitakiat et al., |2002, [2004]. Finally, a crucial

Shttp://www.gogoboard.org
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Figure 2.6: The Phidget interface, with a force sensor attached.

innovation was to make the hardware design open-source, so designers
in different countries would be able to adapt the board to their own
needs. There were custom boards developed in Brazil (BR-Gogo, see

Figure Ramos et all 2007), Korea, and Mexico (see the board in
Figure which was entirely built with found and repurposed elec-

tronic components by Mexican schoolchildren).

The Curlybot, MetaCricket, Phidget, and GoGo Board were all
responses to issues of accessibility and ease of use, but other projects
in those years focused on issues related to extensibility (Figure .
However, towards the middle of the decade, a different breed of pro-
grammable bricks started to develop in research labs, this time less
concerned with issues of accessibility, but pushing the boundaries of
what was possible with physical computing. The MIT Tower took a
similar approach — modular design — in order to extend the capabil-
ities of construction kits.

Lyons and Mitkhak, principal architects of the MIT Tower, wanted
to create a more versatile construction kit that would enable anyone to
design regardless of background and technical proficiency. There were
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Figure 2.7: The GoGo Board (top), the Brazilian version of the board (bottom left),
and a version made with repurposed electronic components by Mexican schoolchil-
dren.

already a number of rapid prototyping kits in use that lowered the entry
barrier for novices and experts alike. However, the existing technologies
all had limitations in terms of processing power or openness of the
software. The MIT Tower addressed many of these limitations with
a fully modular computational construction kit that supported Logo
and other languages and included standalone system components. The
Tower system was the “Cadillac” of programmable bricks at the time,
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and had several add-on boards that greatly expanded the capabilities
of the system, making its processing power comparable to a low-end
computer. Additionally, users could attach standard peripherals such
as keyboards and mice [Lyon, 2003]. The Tower was a visionary board
that inaugurated a new type of design. Today, many computer-on-a-
board designs such as the Raspberry Piﬁ or the BeagleBoardE] still try
to realize the MIT Tower vision.

A late entrant in the third generation of devices was the Wiring plat-
form, inspired by the Stanford CCRMA board. Created at the IVREA
Institute in Italy by Hernando Barragén [2004], it catered to artists and
designers. It made use of the Processing programming environment, a
stable and well-supported development platform created at MIT. Bar-
ragan’s motivation is clear:

“The programmable bricks, Crickets Logo Board and GoGo
board share that are all targeted to children’s education.
They are toys that include mechanical parts, and the devel-
opment environments are based on the concept of visual
programming with the Logo programming language. They
are very limited systems for activities involved in physi-
cal computing, but lack the flexibility required for general-
purpose applications.” |[Barragan, [2004]

His goal was to cater to a different audience by creating a more flex-
ible and general-purpose board, without all the design restrictions of
designing for children. The Wiring platform was very powerful, but
also expensive. Barragan’s advisor, Massimo Banzi, was inspired by his
work and decided to create a lower cost version, perceiving the need
for inexpensive, easy-to-use hardware kits. He teamed up with other
researchers and created the platform that would become the indus-
try standard: the Arduino. The Arduino followed the breakout model
of the BASIC Stamp: it exposed the microcontroller pins to the user
directly and did not have extra electronics for connecting motors and
LEDs. Circuits had to be built externally on breadboards, and addi-
tional components were needed for driving motors. The Arduino used

Shttps://www.raspberrypi.org/
"http://beagleboard.org/
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a flexible architecture for expansions (“shields,” similarly to the MIT
Tower), a focus on open-source and distributed expertise, and a “bare-
bones design,” which made it low-cost compared to other platforms.
The advent of the BASIC Stamp, Wiring, and Arduino platforms,
although not designed for children, brought some very positive wins for
education (Figure . Except for the LEGO Mindstorms, which was
expensive and used proprietary technologies, and the PICO Cricket,
which was short-lived, the other Cricket-inspired platforms did not
manage to reach a worldwide audience because the academics behind
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Figure 2.8: The Wiring (top left) and the Arduino Uno (top right) boards, and an
Arduino connected to a breadboard (bottom) in a very common use case (making
an LED blink).
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them were not well-equipped to start companies and set up worldwide
distribution channelsf’| In addition, the Internet was still incipient in
the early 1990s, so the dynamics of knowledge sharing were quite dif-
ferent. Marvin Minsky famously said that a language needs more than
a good grammar, it also needs a literature — a good corpus of things to
see and learn from. A vast user community developed around BASIC
Stamp and Arduino tools, which generated an immense body of edu-
cational materials, tutorials, and curricula. Arduino’s success builds
on this large literature that surrounded it. In addition, these devices
became very robust, ran on all platforms, and were designed to be open
source from the ground up. Not only did this generate an unprecedented
amount of collective expertise, it also brought commercial vendors into
the fold, ensuring the worldwide availability of these devices.

2.4 The Fourth Generation: New form factors, new architec-
tures, and new industrial design (Pico Cricket, Lilypad,
Topobo, Cubelets, LittleBits)

After 2005, the platforms that emerged were either key extensions of
earlier iterations or radically new designs, many intended to broaden
the participation of girls and younger learners. In 2006, LEGO launched
the next generation of its robot development kit. The NXT’s brick was
a departure from the original RCX design and included a new breed of
sensors and actuators as well as updated programming software. Simi-
larly, the Cricket platform spawned a new generation of Cricket-based
designs, including the Handy Cricket, Handy Board BlackFin, and Pico
Cricket. Significantly, many of the designs in this period applied some
of the design principles synthetized by Resnick [Resnick and Silver-
man, 2005]: designs with low floors and high ceilings, which could also
support “many styles” and “many paths.”

Fred Martin and Li Xu wanted to create an accessible and engag-
ing way to teach compiler fundamentals to a more diverse audience of
undergraduates, so they designed the Handy Crickets and the Chirp

8Still, at its peak, the Cricket platform was deployed to over 20 science museums
in the United States.
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language [Martin and Xu, 2006|. Later, they designed the HandyBoard
BlackFin, an all-in-one solution for classroom use, a pioneering type
of computing device that later came back as the Beagle Board and
Raspberry Pi [Martin and Chanler, |2007].

Another evolution of the Cricket platform was Pico Cricket,
designed to bring together art and technology in a robotics kit. The
authors observed that although robotics had become increasingly pop-
ular, “the way robotics activities are introduced in these settings is
unnecessarily narrow” |[Rusk et al.l 2008]. In most classrooms and work-
shops, the first activity involved building a car, which helped promote
a significant gender imbalance. The team was interested in developing
more ways to engage those students who were not interested in tradi-
tional approaches to robotics, but who would become “more interested
when robotics activities are introduced as a way to tell a story or in
connection with other disciplines, such as music and art” [Rusk et al.,
2008|. The connectors and architecture with greatly modified to make
the kit self-explanatory, and to make it look less gender-biased — the
kit included materials to build projects other than the ones historically
associated with boys (such as robotic cars). Children could easily con-
nect output devices and sensors to the device and then program the
device using a block-based graphical programming language.

However, many of the stars of this generation would follow a dif-
ferent tradition, that of the Braitenberg Blocks and modular systems.
RoBlocks (later Cubelets, Figure was a robotic blocks and soft-
ware package that allowed children to build simple robots easily by
snapping together active blocks. The RoBlocks platform consisted of
nineteen blocks in four categories (sensors, actuators, logic, and utility).
Computation was distributed throughout the kit’s pieces rather than
restricted to a central computer that controlled the pieces’ functions
[Schweikardt and Gross, [2006, [2007).

Topob(ﬂ (Figure was another design that opted for a dis-
tributed modular system, taking design cues from earlier developments,
such as the programming by example technique in Curlybots [Raffle
et al., 2004] and the modular design of the MIT Tower system [Lyon,

http://www.topobo.com/
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Figure 2.9: The RoBlocks system (later Cubelets).

Figure 2.10: The Topobo platform: an assembled artifact (left) and the active and
passive parts (right).

2003]. However, the key innovation in Topobo was the introduction of
active components with embedded kinetic memory. Active and passive
parts could be snapped together to form models of animals, regular
geometries, and abstract shapes. Children would program their modu-
lar creations by example, and the system would record the program and
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play it back for them, in order to explore kinematic concepts, such as
balance, center of mass, center of gravity, coordination, relative motion,

and relationships between local and global interactions [Raffle et al.]
2004).

Another kit that used a modular design, but made programming
more explicit, was RoboBlocks [Sipitakiat and Nusen, |2012]. Sipitakiat
and Nusen designed a robot that could be programmed with tangible
blocks, following the Logo syntax, and targeted at elementary school
learners. Differing from Topobo and RoBlocks, the robot and the pro-

gramming blocks were separate, thus the system followed the architec-
ture of the original Logo turtle.

One notable kit responded to calls for less gender-biased physical
computing and robotics, allowing for new forms of expression. The Lily-
Pad Arduinﬂ (Figure was a pioneering design that, for the first
time, proposed a hardware platform focused on “soft materials” such as
fabric, providing a new medium to engage a diverse range of students in
engineering and computer science — especially girls. The open-source
construction kit for e-textiles was rooted in Buechley’s earlier work

%

Figure 2.11: Lilypad Arduino kit, and Leah Buechley, showing some of the
e-textiles built with the toolkit.

http://lilypadarduino.org/
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on craft-based electronics, which included the production of an elec-
tronic sewing kit, quilt snaps, programmable wearable displays, fabric
printed circuit boards, electronic sequins, and socket buttons [Buech-
ley and Eisenberg, 2007, [Buechley et al.l [2006]. In terms of design, the
LilyPad borrows most of the Arduino’s electronics and software, but
with one fundamental difference. Buechley designed the kit in such a
way that no external electronics were needed, and all the parts (LEDs,
sensors, motors, and battery packs) were mounted on a small printed
circuit board with all the extra components built in. This was a key
usability innovation for the Arduino platform.

The LilyPad Arduino was released as a commercial product in
2007, and it inspired many extensions, including the TeeBoard, Lily-
Padadone, LilyPad XBee, DaisyPIC, and Bling Cricket [Buechley and
Hill, [2010]. Buechley has been studying the efforts of the LilyPad
Arduino community since the platform was released, and her research
has highlighted the need to develop new strategies for broadening par-
ticipation in computing. Buechley urged the design community to shift
its focus. Instead of “unlocking the clubhouse,” or trying to make
traditional computing culture accessible to women, “it may be more
constructive to try to spark new cultures, to build new clubhouses”
[Buechley and Hill, 2010]. Buechley also explored other traditional
materials. One of her projects aims to augment traditional materials
like paper with computational capacity, so that children can engage
in programming in more informal, approachable, and natural ways.
Their flexible pieces (processor, battery, sensors, motors, and so on)
can be attached to specially treated paper to create paper-based work-
ing programs. In another project, Buechley and colleagues challenged
the construction kit paradigm entirely by proposing a new direction.
They noted that while construction kits facilitate the making of tech-
nology, their modularity “constrains what we build and how we think”
[Buechley et al., 2011]. They proposed a “kit-of-no-parts,” or a hand-
crafting approach to learning about electronics and programming, as
opposed to a construction kit approach. “Craft,” they argued, “allows
for rich design exploration that construction kits of pre-manufactured
parts cannot offer” [Buechley et al., 2011]. In their recent designs, they
propose that we should move from assembling electronics to crafting
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them; more recently, they advocated the idea of the “untoolkit” along
those same lines.

Another example of a platform for broadening participation is the
Hummingbird kit, developed as an offshoot of the Robot Diaries project
at Carnegie Mellon University, with the overarching goal to “enable
girls to engage with, change, customize, or otherwise become fluent with
the technology in their lives” [Hamner et al., 2010]. One final entrant in
the category is the Makey Makey toolkit, a modification of the Arduino
platform that allows children to use everyday objects (including fruits
or any mildly conductive object) as sensors, without breadboards or
additional electronics. The Makey Makey became quite popular due to
one clever innovation. It maps sensors to regular keyboard keystrokes
or mouse clicks, so any existing software that is controlled through a
keyboard or mouse can be used: virtual music instruments, animated
characters, games, storytelling environments, and so on. This made the
kit extremely easy to install and use.

The littleBits platforrﬂ (Figure also appeared around the
same time. Similarly to Cubelets and Topobo, it did not require a
computer, and had blocks that would magnetically connect to assemble
circuits. The blocks were color-coded, clearly identifying inputs, out-
puts, logical operators, and power. The physical design made sure that
only functional circuits could be assembled, and a proprietary commu-
nications protocol between the blocks would take care of all data and
power management.

Many other platforms were launched within this generation, but
many were short lived or were restricted to relatively small niches.
Examples of those are the Netduino (Figure left) MAKE Con-
troller (Figure right), NET Gadgeteer, PCduino. More recently, a
plethora of platforms and variations were launched. For space consid-
erations, we will leave these new versions out of this review.

Finally, a different type of platform focused on broadening par-
ticipation by catering to younger audiences. The Tern systemE
designed by Michael Horn at Tufts University, was designed to bring

Hwww . littlebits.cc

2hci.cs.tufts.edu/tern
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Figure 2.13: Netduino (left) and the MAKE Controller (right).
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programming to younger audiences by moving it from the screen to the
tangible realm, using wooden blocks with fiducial codes. Since the sys-
tem was focused on programming, it did not include physical computing
components such as sensors and actuators. However, a new iteration
of the system — first named KIWI and then KIBdEl — developed by
Marina Bers at Tufts University took Horn’s platform to the realm of
physical computing by adding a physical robot to the system, sensors,
and output devices (Figure. One top of Horn’s original innovation

Figure 2.14: The KIWI/KIBO system, designed for children aged 4-7 years old.
It uses wooden blocks without electronics (tagged with optical codes) as a pro-
gramming platform, and a robot base which can read and execute the optical codes
without a computer.

13|kinderlabr0botic:s.com
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of using low-cost wooden blocks with optional codes instead of electron-
ics, KIWI/KIBO also introduced a new idea: the robot could read the
optical codes from the wooden blocks directly, without a computer.

2.5 The Fifth Generation: Single board computers
(Raspberry Pi, PCDuino, Beagle Board)

A new development in this field came in 2012 with the launch of the
Raspberry Pi platform (Figure. Despite the fact that many other
single-board computers have been in the market for a long time (for
example, Beagle Board,El Figure, the Pi platform was the one that
made them popular and affordable (4 million Pis have been sold up to
February 2014). Other boards worth mentioning are the PCDuinﬂ
(Figure [2.16), which merged the idea of a full-blown computer with
the Arduino architecture, offering output and input ports directly on

Figure 2.15: The first Raspberry Pi board.
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Figure 2.16: The PCDuino board.

the board; and the Intel Galileom a full-blown Windows-compatible
computer also with the Arduino pinout.

The relatively low price point of these devices, which is quite close
to many microcontroller-based devices, made them a viable alternative
to the microcontroller in some educational scenarios. Pis and similar
boards offer an entire new set of features for robotics and physical com-
puting, but also some tradeoffs. For example, they allow computational-
intensive applications such as real-time image processing; for example,
students could use a webcam to implement a robot with real-time com-
puter vision. Because these devices are full computers, they can be
accessed via a remote terminal, enabling users to interact with the
device at a distance using a tablet or phone. However, their physical
computing device also changes the interaction paradigm in important
ways. For example, users would not need a computer at all, since they
can be programmed directly if connected to a monitor. This solution,

http:/ /www.intel.com/content /www /us/en/embedded /products/galileo/
galileo-overview.html


http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html
http://www.intel.com/content/www/us/en/embedded/products/galileo/galileo-overview.html

36 The Story of Microcontrollers in Education: Five Generations

Figure 2.17: The Beagle Board.

although elegant, fundamentally changes how students do the program-
ming and debugging of their devices. They could, for example, leave
the Raspberry Pi board mounted on a robot, use remote desktop soft-
ware to access it wirelessly, and then make changes to the program
on-the-fly as the robot goes around the room, without the need to stop
the activity, reprogram, and run it again. Another promising direction
is the interaction with mobile devices via Bluetooth or wifi technolo-
gies, for environmental data collection, controlling everyday objects,
and “Internet of Things” applications. These new ways of interacting
with physical computing devices could open a host of new possibilities
for designers, but further research and design are needed to ascertain
how they will play out in education.
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A New Framework for Generative Design, or a
Call for Action Against the Arduino Monoculture

The proliferation of designs for digital manipulatives has prompted
researchers to create taxonomies to better frame design principles, audi-
ences, and learning goals. One such taxonomy, created by Fisenberg and
collaborators |Eisenberg et al.. [2002], has three categories. The first,
“specificity of constructions,” ranges from assembly kits that can gen-
erate just one product (for example, for creating anatomical models of
animals) to very flexible platforms such as Lego, which affords infinite
possibilities. The second, “domain specificity,” gauges how much a given
construction kit can be connected to a particular field of knowledge (for
example, a kit for assembling molecules in chemistry), or if they are
general kits. Finally, their last category refers to “means of connec-
tion and construction materials,” and examines how the parts connect
and what material is used. |Zuckerman et al. [2005] came up with a
more general taxonomy with two groups: “Froebel-inspired Manipula-
tives” (FiMs) and “Montessori-inspired Manipulatives” (MiMs). FiMs
are analogous to wooden blocks: they allow children to build physi-
cal objects (for example, Froebel gifts, Legos), and their main learning
goal is design and basic engineering. MiMs are tangible systems that
enable children to explore particular domains of knowledge, such as

37
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mathematics or physics (for example, Cuisinaire rods, and so on), and
concretize abstract concepts.

While these frameworks are useful in categorizing toolkits in various
ways, especially regarding how connected they are to a particular disci-
pline, there is still a missing level of analysis, because these frameworks
do not address three important dimensions:

(1) What are the levels of abstraction exposed to students and what
interactions do they afford? With digital manipulatives, children
have to learn an abstraction layer before they can even think
about the concrete projects they will produce , .
In Figure [3.1] we have a representation of the different abstrac-
tion layers in a microcontroller-based device. Level 1 exposes
all the most basic electronics components and requires com-
plex skills; level 2 takes care of most of the electronics design
and only exposes the microcontroller architecture, while level 3

Abstraction layers Skills needed

L 13 [ Sensors and actuators
eve \ '—E > High-level programming (Logo, Scratch)

Inputs and outputs \ \ g‘ =

Mid-level progr ing (Pr ing)
Level 2 Electronics design
Microcontroller
Level 1 Electronics design

Circuit board manufacturing
Soldering
Low-level progr

Basic electronics
components

(A bly, C++)

Figure 3.1: Representation of the idea of abstraction layers, from the most basic
(level 1, basic electronics components) to level 3, where students are only exposed
to input and outputs.
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encapsulates even the microcontroller and exposes only inputs
and outputs. Microcontroller pins, resistors, analog/digital sig-
nals, AC/DC current, and polarity might or might not be hidden
behind an abstraction layer, so the design of the layer exposed
to students determines how much of those concepts in electrical
engineering they will have to learn prior to even beginning their
projects.

What are the direct connections between specific design decisions
and the learning goals intended for the toolkit? Design decisions
about these abstraction layers can radically affect the achievable
learning goals. For example, a toolkit that is supposed to help
students learn robotics, but makes them spend half of their time
figuring out how a breadboard works, will not be able to live up
to its goals.

Toolkits should be considered as part of a larger developmental
trajectory. If our goal is to turn children into experts, we need to
design a developmental trajectory. This trajectory needs to have
multiple milestones: which scaffolds or abstraction layers should
be abandoned as children progress through the developmental
trajectory, and which ones should stay? Over time, and consid-
ering the use of several toolkits, which parts of the construction
tasks should children do by themselves, and which parts should
be done by the materials?

My claim is that by better examining these issues, we will be able to

make predictions of the match between different toolkits, their learning

goals, and their developmental purpose. Historically, this concern was
present in the design of many toolkits such as the Cricket and the
LEGO Mindstorms kit (designed by education researchers), but was

left behind when platforms such as Arduino (designed by interaction
designers) became the de facto standard.

In this monograph, I propose a categorization based on design com-
mitments and principles, employing three analytic constructs:

1.

Selective exposure (What is foregrounded or backgrounded
in hardware and software design?): 1 have identified specific
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elements — based on designers’ theoretical or pedagogical com-
mitments — in several toolkits that can be exposed or hidden
from users. Sometimes this happens specifically for pedagogical
purposes, so that users can focus on one particular learning goal.
For instance, if designers want users to learn about microcon-
troller architecture, they should “expose” the microcontroller pins
to the user; otherwise, they can overlay a new hardware layer to
make the pins invisible. Selective exposure can also have the effect
of changing the design compromise between usability and power,
as we will discuss in the next two items.

a. Selective Exposure for Usability (or “embedded error
correction” — How does the material communicate rules
for its use?): inspired by McNerney’s idea of self-debugging
[McNerney, [2000], I propose that, again, depending on the
learning goals of the toolkit, some categories of errors should
be corrected by the design of the toolkit itself, increasing
usability. Designers make decisions that prevent errors, so
that learners can get up to speed and experience success,
in other words, students can start building with a “low
threshold.” For example, if we are not interested in electri-
cal polarity as a learning goal, the connectors in a robotics
construction kit should either “fix” (that is, reorient) them-
selves or not allow wrong connections to be made. Tradi-
tional LEGO bricks, for example, have a built-in error cor-
rection system that only allows parts to fit in ways that are
structurally sound, and in mostly regular and symmetrical
ways — the result is that children can build much more
complex structures with the material than without. The
error correction could also be exaggerated, in which case
the materials would do “too much” for the students, or be
nonexistent, which would arguably limit the complexity of
the resulting projects since all error corrections would have
to be done by the users themselves.
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b. Selective Exposure for Power (or “tangibility
mapping” — How are cognitive and physical operations
mapped to each other, and how can the design make them
more explicit?): In order to raise the ceiling of possibilities,
designers want learners to know and have access to what
is possible within a toolkit, beyond what is simply easy
to construct. So this design dimension makes evident the
new, innovative, and different possibilities and ways things
can be connected to one another to reveal the real power
of the toolkits. This construct, consequently, examines
how the toolkit maps desirable cognitive operations to
physical operations. For example, if a toolkit has magnetic
pieces that snap together spontaneously, they map the
fact that conceptually these parts “want” to connect as
well. If certain parts “feel” or look like they should be
inside other parts, they would be mapping some hierarchy
about the system: for example, in tangible programming
toolkits it is common to see blocks that would fit easily
inside a “repeat” block. Conversely, the mapping could also
be confusing, if the physical operations do not map well
to the abstract ones. There could be several dimensions
for tangibility mapping: connection between parts, their
hierarchy, or indications of the flux of information between
tangible blocks.
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Applying the Framework to Existing Platforms

In what follows, I will examine most of the platforms described earlier
in this monograph to illustrate these three constructs, draw conclusions
about their potential and limitations, as well as provide directions for
future designs. In particular, I will focus on a detailed analysis of the
first construct, and also present examples of the remaining two.

4.1 Selective exposure

4.1.1 Exposure of the microcontroller

For physical computing toolkits, a first criterion of selective exposure
refers to the level of exposure of the microcontroller, the “brain” of most
toolkits. A microcontroller is a programmable component that inter-
faces with external devices such as sensors and motors. As we can see
in Figure they have several terminals to which these output/input
components are connected. Each of those terminals has a number or a
code, and can be set to “high” (roughly equivalent to “on”) or “low”
(“off”). The use of “high” and “low” is due to the way semiconductor
components work and the voltage level that will be applied to the pins.
This terminology makes perfect sense to engineers who have to deal
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MCLR/VPP/THV [1] [«] RB7/PGD
RAO/ANO [2] [39 RB6/PGC
RA1/AN1[3] [8] RBS

RA2/AN2/VREF—[4] [371 RB4
RA3/AN3/VREF+ 5] [3g RB3/PGM
RA4/TOCKI [&] [35] RB2

RA5/AN4/SS[7] [34 RB1
REO/RD/ANS [&] [33] RBO/INT
RE1/WR/ANS [5] [32 vDD
RE2/CS/AN7 [io] [31] vss
VDD [11] Feerer [30] RD7 /PSP7
VSS [iz] [z RD6/PSP6
0SC1/CLKIN [13] [28] RD5/PSP5
0SC2/CLKOUT [i4] [27] RD4/PSP4
RCO/10SI/T1CKI[i5] [26) RC7/RX/DT
RC1/T10S0/CCP2 [is [25 RC6/TX /CK
RC2/CCP1[i7] [24] RC5,/SDO
RC3/SCK/SCL [i8 [23] RC4,/SDI/SDA
RDO/PSPO [is] [22 RD3/PSP3
RD1/PSP1[9] [z11 RD2/PSP2

Figure 4.1: A very popular microcontroller (PIC 16F877A), and its pinout diagram.

with the intricacies of circuit design and logic, but they are obscure
symbols to novices who would instead instantly understand the mean-
ing of “on” and “off.”

The Lego Mindstorms kit, for example, adopts a very careful level
of exposure of the microcontrollers, heavily inspired by the design of
the MIT Cricket. These devices kept most of the inner working of
microcontrollers hidden from users and exposed only their high-level
functionality (that is, receive sensor values, process those values in a
program, and control output devices such as motors or lights). Users
could not activate individual pins of the microcontrollers or any of its
hardware-level features; instead, there was an extra abstraction layer
that enabled students to control three intuitively-named output ports
(A, B, and C) and receive values from three sensors (1, 2, and 3) —
much more learnable than memorizing that the input ports are, for
example, pins 16, 19, and 21. In this case, selective exposure increases
usability by employing embedded error correction.

On the other end of the spectrum, other devices expose most of the
specificities of the underlying electronics and are based on the idea of a
barebones “breakout board” for microcontrollers. The BASIC Stamp,
Wiring, and the Arduino board are popular representatives of this cat-
egory. With these devices, users cannot simple address “motor A, on”
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Arduino C Cricket Logo
int ledPin = 13; to blink
void setup () { forever [
pinMode (ledPin, OUTPUT) ; a, on
} wait 10
void loop () a, off
{ wait 10
digitalWrite (ledPin, HIGH) ; ]
delay (1000); end
digitalWrite (ledPin, LOW) ;
delay(1000);
}

Figure 4.2: A comparison of two programs that make an LED blink, in Arduino C
and Cricket Logo.

but they have to use a much more technical language to, for example,
“set pin 14 high.”

A clear example of the consequences of different levels of selective
exposure of the microcontroller — and how it decreases usability — is
how students end up having to program such devices. In Figure
both pieces of code are meant to make an LED blink. In the Arduino
programming language (Figure left), we can observe how the com-
plexities of the hardware design, such as exposing microcontroller pins
directly to users, have important usability consequences. Not only do
users have to pre-assign particular pins to their functions (outputs or
inputs), but also pins are set to “high” and “low” instead of the more
intuitive “on” and “off.” More significantly, the technical terms such
as “void” and “digitalWrite” make parsing the code much harder for
novices. In comparison, Cricket Logo (Figure right), which was
designed for the MIT Cricket and also the LEGO Mindstorms kit, car-
ries over the design decisions at the hardware level to the programming
language: students can simply turn things “on” and “off,” do not have
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to master unnecessarily complex programming concepts and terms, and
the code is much more readable and understandable.

One can imagine that the writing of “digitalWrite (13, HIGH)”
might trigger extraneous and hard questions that would get in the way
of children building their projects: What is “digital write”? Why not
only “write”? Are there other types of “write”? What am I writing
to? Why the number 13 and not any other number? Why does HIGH
mean “on”? These questions make sense for students digging deeper
into electronics, robotics, and physical computing. They don’t make
sense for students who are just getting started. Even if we were to
introduce children to these concepts before actually using the toolkits,
they would still sound quite extraneous to the job at hand, which raises
the question of transfer of knowledge from the “kid” platforms to the
“adult” platforms.

4.1.2 Exposure of the embedded electronics

A second criterion is the selective exposure of the embedded electron-
ics. When connecting a sensor to a microcontroller, one might need to
add resistors, amplification circuits, filters, or a power supply to the
sensors. For motors, often there needs to be a driver circuit and over-
current protection. Motors and sensors for the LEGO or Pico Cricket
kits had all the circuitry enclosed and hidden in a plastic block; users
did not need extra components or soldering, thus increasing usability.
On the Arduino/BASIC Stamp side, however, none of those circuits
are present; all the electronics are exposed to users who need to cal-
culate the values for the resistors, find out the right components for
the circuits, and build them. Despite the fact that the platform is, as
a result, more flexible and powerful, this has important consequences
for learnability: to simply make an LED blink (using the code from
Figure , the hardware assembly would be radically different, as we
can see in Figure The Arduino circuit needs a breadboard, three
jumper wires, one resistor, and the LED itself. The Pico Cricket circuit
only needs the Pico Cricket board, a cable, and the light module — no
extra components.
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Figure 4.3: A comparison of two light-blinking circuits, using an Arduino (left)
and Pico Cricket (right).

4.1.3 Other levels of selective exposure

A third category, beyond the “Arduino” and “Cricket” models, is com-
posed of devices that took the idea of selective exposure even further —
they enabled interaction at a different level of abstraction that broke
the traditional paradigm of programmable bricks. Topobo, Braiten-
berg Blocks, and Cubelets — all programmable without computers —
are among the main devices that fall into this category. They can be
programmed autonomously either by example or by putting together
their own “smart” tangible blocks; the parts are at the same time the
programming medium and the physical objects sensing or being con-
trolled. These platforms added new levels of selective exposure, since
their designs further hide technical aspects of robotics and engineering.
In Figure we have an illustration of the different levels of exposure
of these types of platforms: the Arduino-like devices expose the entire
microcontroller but are harder to use. On the other end of the spec-
trum, Topobo and Cubelets expose only their smart modules, so they
are easier to use but less flexible.

Now that I have explored in depth the selective exposure for two
major items — the microcontroller and the embedded electronics —
I will go into more detail concerning the connection between learning
goals and selective exposure, using the various toolkits already men-
tioned. Typically, when children use physical computing and robotics
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ly / Power

Motors

Output
circuitry

Lights/LEDs
Microcontroller
Sensol
Input circuitry

Sensor
Arduino Cricket Cubelets
Wiring Gogo Board Moss
BASIC PICO Cricket Topobo

Stamp

Figure 4.4: Selective exposure makes platforms easy to use, but alters the compro-
mise between power and usability.

kits in school, there are eight very common learning goals (some of
them present in the New Generation Science Standards), involving the
understanding of:

(1) Resistors.

(2) Ohm’s law (that is, the need to calculate current, resistance, volt-
age)

(3) Functionality of a breadboard.
(4) Polarity.

(5) Microcontroller pins.
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(6) Electrical connections.
(7) Programming.
(8) Inputs and outputs.

If educators have limited time in classrooms, how do we choose plat-
forms for each of these goals? The Arduino and BASIC Stamps plat-
forms, for example, “expose” all eight elements to the user. Even very
basic projects, such as making an LED blink, require a breadboard,
resistors, special components, and some knowledge of electronics, which
might overburden students and teachers with work that is not related
to the original learning goal. Table lists platforms and summarizes
which elements are exposed or hidden. Four categories emerge from
Table Region A is populated by Arduino/Basic Stamp architec-
tures that expose every one of the eight items. Region B abandons some
aspects of this architecture: the Lilypad kit is provided with sensor and
output boards with motor drivers, resistors, and all necessary electronic
components, so there is no need to understand how to use breadboards
or resistors. Region C has the classic Cricket-inspired devices and the
Phidgets kit, which add an extra hardware abstraction layer to make
the interaction easier: those platforms do not require students to think
about polarity, microcontroller pins, or Ohm’s law. Finally, region D
adds an extra abstraction layer by allowing the components of the kits
to be at the same time input-output devices and elements in their own
programming — essentially, users only need to operate at the level of
inputs and outputs.

4.2 Selective exposure for usability: Embedded
error correction

One of the sub-constructs proposed in this monograph concerns how
materials communicate the rules and best practices for construction.
In other words, how does the toolkit “correct itself” and avoid certain
types of user error, either by restricting actions or by adding cues to the
design? Here I exemplify this idea by examining some common consid-
erations a user must make when using physical computing platforms:
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1. How do the parts connect: is it through wires, magnets, sol-
dering, and so on?

2. Valid connections: which are the allowed connections between
the parts?

3. Categories of parts: what are the types of parts and what do
they do (sensors, motors, logic blocks, and so on)?

4. Indications of functionality: Can the user visually or physi-
cally infer functionality of the parts?

Examining the platforms discussed in this monograph, we again see a
very clear progression from Arduino-like platforms to Cubelets. Think-
ing as a novice, it is hard to infer how the Arduino components have to
be connected: with solder, wires, or jumper wires? The kit itself does
not communicate how the connections should be made. It also does
not enforce valid connections, so even connections that can damage
the board are valid.

The LilyPad kit proposes a change by offering a clear indication of
how the parts connect: with conductive thread. However, it does not
clearly enforce valid connections, nor there is indication of the cate-
gories of parts except for the label in them. The Phidgets, the Cricket,
and the GoGo Board have a different type of polarized connector that
guides the user in making the correct connections. But more advanced
design is found only in the LEGO and in the Pico Crickets kits, in
which parts have different shapes and colors depending on their func-
tion (motor, sensor, light). The Lego connectors were designed to be
connected in any position (Figure , and automatically correct any
polarity mistake. Finally, kits such as Topobo, littleBits, and Cubelets
are able to inform the user when a particular block is active, thus
helping with debugging and understanding the program’s flux. This
feature is implemented by using connectors with extra terminals for
an internal communication protocol. The littleBits connectors, shown
in Figure also have color-coded connectors with specially designed
magnets that enforce the correct positions.

Table [4.2] summarizes the characteristics of all the platforms
according to the self-error correction construct. We can observe the
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Figure 4.5: Sketches of the Lego connectors.

Figure 4.6: The littleBits platform, with magnetic “snap-on” connectors.
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Table 4.2: Different levels of embedded error correction for physical computing.

W R Valiq Categories of Indicqtiong of Count
connections parts functionality
:
:
Yes Yes 2
Yes Yes 2
Yes Yes 2
Yes Yes Yes 3
Yes Yes Yes 3
Yes Yes Yes Yes 4
Yes Yes Yes Yes 4
Yes Yes Yes Yes 4
Yes Yes Yes Yes 4

progression and trend in recent platforms to adopt more embedded
error correction and designs that try to better communicate to the
users how its parts should be connected and used.

4.3 Selective exposure for power: Tangibility mapping

The last sub-construct that I propose is the power dimension of selective
exposure. This looks at how the toolkit maps cognitive to physical
operations in order to allow learners access to all the possibilities of
the toolkit beyond the basics, thus “raising the ceiling” by restricting
or foregrounding particular design elements. For example, a kit can
have magnetic pieces to increase usability by avoiding polarity errors,
as described in Section However, if designers want to implement
features to explicitly increase the power of the toolkit, they could map
structure or hierarchy through the tangible pieces; instead of simply
indicating polarity, the magnets could do more sophisticated tasks. For
example, certain parts could “feel” or look like they should be inside
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other parts — for example, in tangible programming toolkits, blocks
could fit easily inside a “repeat” block. Another example of indicating
structure through the tangible pieces comes from Topobo, where the
“brain” of the system (called “active”) is larger than the other pieces
and has multiple connectors (Figure [4.7)).

A second example of how tangibility mapping can increase the
ceiling for students’ projects comes from the MOSS toolkit. MOSS
is a toolkit created by Mark Gross and Eric Schweikardt at Modular
Robotics around 2013, with a novel, physical-block-based design. The
blocks have assigned functions and connect magnetically. The toolkit
has several features to enforce error correction, but it also embeds sev-
eral design elements that indicate to users more powerful kinds of possi-
bilities. MOSS’s architecture has several types of blocks: power (green),
data in (brown), data out (red), and pass-through (blue) (Figure [4.8).

The MOSS architecture enables users to quickly build robots that
respond to simple sensors, such as proximity or light sensors. In Fig-
ure [£.9) we can see how two blocks “talk” to each other — users just
connect the red face (data out) of the proximity sensor block to the
brown face (data in) of the motor block. This feature successfully maps
a desirable cognitive operation (connecting sensors and the actuator)
to a physical activity. MOSS, however, has new tangibility mapping
features. The “pass-through” block enables children to quickly move
beyond the basics by connecting two sensors to a motor or two motors
to a sensor (Figure . The fact that the “pass-through” block (the

Backpack
Active /

Passive

Figure 4.7: The “brain” of Topobo (blue), and other peripheral blocks — backpacks
and passives.
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Power

Green faces route power
throughout a MOSS robot.
Once a block is powered by
connecting a green face to a
Battery Block, its other
green faces will power more
blocks.

Data Out

Red faces broadcast data.
For instance, the red face on
a Proximity Sensor sends out
data according to how close
it is to an object.

Data In

Brown faces listen for data
to tell that block what to do.
Connect a red face ona
sensor to the brown face on
a Motor Block and it'll drive
according to the sensor’s
output.

Pass-through

Blue faces can conduct
either Power or Data, but not
both at once. You can use
the blue faces on a Flexy
Block to connect two faces
that can't be arranged to
touch.

Figure 4.8: Types of blocks in the MOSS architecture.

Figure 4.9: A simple MOSS connection.

blue one) has six faces automatically suggests that it can be connected
to more than two blocks. Thus, the possibilities would be to connect two
(or more) motors to a sensor (Figure left) or two or more sensors
to a single motor (Figure right). If two motors are connected



4.4. Other factors influencing selective exposure 55

Figure 4.10: More sophisticated arrangements of MOSS blocks.

to the pass-through block, it “understands” that the signal from the
sensor should be used to control both. If two sensors are connected,
the pass-through block averages the two values and communicates it
to the motor. Here, again, a desirable cognitive operation (combin-
ing inputs and outputs) is successfully mapped to tangible, physical
actions, enabling users to build more complex projects without great
technical complications. Imagine, for example, combining two sensors
in an Arduino platform. Users would have to make the correct connec-
tions, normalize the data from the sensors, average the values, and
rescale the resulting value to control the full rotation range of the
motor. It would be virtually impossible for a user to “stumble” upon
the possibility of averaging sensor values using Arduino-like platforms,
but the opposite is be true for MOSS.

4.4 Other factors influencing selective exposure: Cost,
audience, and production

Since the main focus of this monograph was education, I had to leave
out some additional factors that also influence the design of physical
computing platforms. Those factors are not inconsequential for educa-
tion but they are less directly connected to issues of learning and cogni-
tion. One of those is cost. Differently from software, hardware needs to
be manufactured and physically distributed. The way manufacturing
works is determinant in what designers can and cannot produce for a
reasonable cost. For example, adding a plastic enclosure to a circuit
board can multiply the price of the final product several times, due to
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do the high cost of tooling for injection molding. Adding a manual task
to the production workflow also increases costs significantly: if a con-
nector has to be placed onto the circuit board by a person, rather than
by a machine, the entire cost equation changes dramatically. Along the
same lines, the production of circuit boards is optimized for miniatur-
ization, so manufacturers would like to cramp as many components as
possible in the smallest possible board. This might not be necessarily
the best design for children, but the economic imperative might be, at
times, more important.

Another factor that is fundamental is the intended reach of each
toolkit. Toolkits that were born in research labs, initially intended for
small audiences and for pilot studies, had the luxury of trying out
more sophisticated designs and small-scale manufacturing techniques.
Systems that were born already with a wide reach in mind had an extra
constraint that needs to be taken into consideration. The cost equation
of a commercial product such as a Lego kit is completely different from
a platform being developed in the lab, so when making comparisons we
need to be aware of those types of limitations.

Mentioning this additional design decisions is important since my
goal is not to glorify or criticize the different platforms. Conversely, the
point is that, for manufacturing a toolkit and deciding on the intended
audience, designers and companies have very precise procedures. The
financial impact of each design decision can be calculated with great
accuracy. However, the learning impact of those design decisions is
much harder to evaluate, in part because we do not have good frame-
works for that analysis — and starting this discussion is the main goal
of the remainder of this.
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Discussion

This monograph focused on a review of computationally-enhanced
toolkits for children and on the creation of a framework to better under-
stand the useful dimensions for their design. This is particularly impor-
tant today given the increased interest in programming and robotics in
school environments, as well as the recent explosion of design creativity
in the field fueled by lower production costs and crowdfunding.

Nevertheless, another important dimension in this discussion is less
about design and technologies and is more philosophical. For exam-
ple, several contemporary scholars and practitioners are debating if we
should focus our energies on developing technologies for children, or on
having children learn how to use adult technologies. In what follows, I
discuss some of these questions.

5.1 Children’s technologies for children, or adults’
technologies for children?

From the early 1980s up to the present time, in the realm of
computationally-enhanced toolkits for children, there has been a
clear shift from child-driven to professional-driven design. The early
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programmable bricks were born out of a limited group of researchers
and developmental psychologists who were interested in how children
would utilize this new technology as an expressive medium. This mind-
set was connected to the research on computer programming and Logo,
and since the actual first turtles were essentially simplified robotic
devices, “in the 1980s, when microcontrollers were available, it was nat-
ural for Seymour Papert to dream of smart bricks” [Tinker, 2013]. In
fact, there were three main lines of research around smart bricks: (1)
children’s engagement in design and engineering; (2) examining how
students would build and program cybernetic, creature-like systems;
and (3) the sense-making processes through which children would move
forward during their construction of such systems [Martin| 2013].

These early stages of the research and development were heavy
on usability and cognitive/developmental research (see, for exam-
ple, Nira Grannot’s Ph.D. dissertation, advised by Edith Ackermann,
an impressive treatise on how children make sense of computational
manipulatives |Granott, 1991]). One consequence of these foci was the
understanding of the importance of selective exposure. All exposed and
hidden elements of the design were intentional, despite the higher cost
and greater complexity of manufacturing. The design heuristic was first
to consider what should be foregrounded for children at a given devel-
opmental stage, and how to maximize the complexity of what they
could build — and only then design the technology around it.

In 1992, when the first BASIC Stamp came out of Parallax, the
inspiration was quite different. Parallax catered to hobbyists, and K-12
education was an afterthought. In 2001, Phidgets appeared on the mar-
ket aimed at designers, engineers, and college students, and the Wiring
platform, which came out in 2003, was yet another attempt to make
designers’ lives easier by making rapid prototyping modular and more
approachable. The Arduino board, an offshoot of Wiring, shared those
same design goals. This second lineage of products catered to hobby-
ists, artists, college students, and interaction designers. Consequently,
they differed from the earlier lineage in their design commitments and
compromises. Reflecting the spirit of the open source software move-
ment, these designs were intended to make electronics more accessible
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and to bring the benefits of programming to the physical world — but
there was no connection with interaction design for children or K-12
education.

The consequences of the ensuing design decisions were that most
of these platforms used programming languages based on Java, C,
or BASIC. Likewise, they required soldering, resistors, and bread-
boards, even for simple projects, and they were not easily made into
autonomous devices (most did not have built-in batteries and were not
robust enough to be mounted on top of robots or cars). With these
new platforms, much less attention was given to selective exposure,
embedded error correction, or tangibility mapping, since the main con-
sideration was low-cost and flexibility — exposing all possible features
at the lowest cost.

5.2 Physical computing for children: The rules
of engagement

Another important point is about why non-child-centered tools ended
up becoming popular in schools. After “professional” technologies such
as Arduino boards became widely popular in schools, educators sought
a justification for encumbering children with all the extra work that
they required. The justification was that exposing students to profes-
sional engineering tools could both prepare students for jobs in engi-
neering and boost interest in the career path; after all, how you can
do robotics if you do not know resistors? Arguably, for engineers and
hobbyists to do robotics properly, it is crucial to understand what resis-
tors and capacitors are and how to calculate current, resistance, and
voltage. From this perspective, it is unproblematic to expose children
to this content and level of detail since this is what they will encounter
when they decide to do “real” robotics.

However, there is a flaw in this argument. I argue that this shift
in focus impeded the goal of exposing students to powerful ideas in
robotics, computing, and cybernetics [Papert|, 1980] because much more
time had to be spent on the technicalities of making basic things
work — connecting together the breadboard, motor drivers, jumper
wires, and resistors, as well as understanding the syntax of Arduino
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C code. Since these were the first set of problems that children would
encounter, they consequently became the focus of the pedagogy and
the curriculum. These technicalities were exactly what the previous
generations of designers attempted to hide from students, because they
ended up being considerable barriers for novices — with very little gain.
This setback was unfortunately obfuscated by the huge popularity of
Arduino-like devices. Thus, because the justification for learning phys-
ical computing has deep consequences for design choices, those choices
need to be made clear from the beginning [Berland, 2015]. The design
of a mere motor connector will be quite different if we are designing for
vocational training in engineering or for personal expression through
robotics. Since time is limited in schools for activities that are not in the
core curriculum, these design decisions will ultimately decide if these
tools will democratize engineering or further privilege a small group of
students.

5.3 A developmental trajectory, or selective unveiling

This approach, which advocates exposing children to “professional”
tools, also ignores the fact that rarely do we adopt such an approach in
other areas of education. We do not introduce children to reading by
giving them James Joyce’s Ulysses or to music by asking them to play
the harpsichord; we use specially designed materials and tools. When
we need to transit children to professional tools, we do so carefully and
also respect children’s developmental stages. In classical music, it is
accepted that the transition between a child’s flute and the clarinet will
require several hundreds of hours of coaching, training, and a carefully
curated sequence of materials.

Thus, in other fields, we understand how to construct developmen-
tal trajectories to lead children to different levels of expertise. Instead
of exposing children to inadequate technologies, a more productive
approach would be to identify the many toolkits that children should
use throughout their school years, understand what each can accom-
plish, and task designers with the creation of better bridges between
toolkits. Better yet would be to design kits that “grow” with the child,
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unveiling layers of abstraction as they get mastered by students, and
allowing for higher customization as children are ready for it. This idea
of selective unveiling could be particularly powerful for physical com-
puting kits because the design space is quite ample: there are infinite
design layers between the act of soldering a transistor and plugging in a
Lego sensor, as well as ways to transition between them. For example,
a toolkit could start as a completely enclosed device with inputs and
outputs, a la Lego Mindstorms. Once children exhaust the possibili-
ties, a special button could open the plastic case and unveil the circuit
board, which could then be removed, and used just like a Cricket or
GoGo Board. Finally, once students need more flexibility, they could
be instructed to remove the microcontroller and plug it into a breakout
board similar to Arduino.

Unfortunately, even given the existence of many toolkits in the mar-
ket, we do not make available the time, coaching, or tools to make these
developmental trajectories happen in schools. The consequence is that
we either alienate students who are not identified with STEM careers
(as they become frustrated with inadequate tools), or we relegate stu-
dents to strictly scripted 30-minute workshops that do not lead to any
meaningful learning.

It would be significant to develop more toolkits at the beginning of
the trajectory, and figure out the specifics of how these tools can scale
within the constraints of the educational ecosystem: fitting well into
curricula, school budgets, learners’ time, attention, and interest.
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Conclusion

The main construct proposed in this monograph (selective exposure)
and its two subcategories (embedded error correction and tangibility
mapping) could help understand the use of current products and give
designers a framework to imagine new ones. Today’s designs for children
are again beginning to be informed by research developments stretch-
ing back to the early 1980s. In surveying the more recent literature,
one notices a deep commitment to the constructionist ideas articulated
by Papert and his colleagues. The interlude of the Arduino popular-
ity surge, while problematic from a design standpoint, was perhaps a
necessary step for physical computing for children to grow out of its
roots and its several design experiments and reach out to the world.
It appears that designers are now realizing that the work is far from
done, and there are multiple opportunities to remix and reconceive the
Cricket, the Braitenberg Blocks, and the Arduino technologies to cre-
ate brand new ways to engage children in robotics, interactive arts, and
cybernetics. Fortunately, there still appears to be a deep commitment
to broadening participation in the field of computing, supporting many
paths and learning trajectories, designing devices that can be integrated
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easily into schools, and exploring new materials and media. The ethos
of physical computing seems to have shifted back from catering to a
minority of hacker kids to offering opportunities for all children to make
these devices, hopefully, the Papertian gears of their childhoods.
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