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ABSTRACT
Intelligent toys and smart devices are becoming ubiquitous
in children’s homes. As such, it is imperative to understand
how these computational objects impact children’s develop-
ment. Children’s attribution of intelligence relates to how they
perceive the behavior of these agents [6]. However, their un-
derlying reasoning is not well understood. To explore this, we
invited 30 pairs of children (4-10 years old) and their parents
to assess the intelligence of mice, robots, and themselves in
a maze-solving activity. Participants watched videos of mice
and robots solving a maze. Then, they solved the maze by
remotely navigating a robot. Solving the maze enabled partici-
pants to gain insight into the agent’s mind by referencing their
own experience. Children and their parents gave similar an-
swers for whether the mouse or the robot was more intelligent
and used a wide variety of explanations. We also observed
developmental differences in childrens’ references to agents’
social-emotional attributes, strategies and performance.

Author Keywords
Child-agent interaction; child-robot interaction; intelligence
attribution; parental influence.

INTRODUCTION
Conversational agents and connected toys are becoming com-
mon in our homes. Prior studies show that children readily
interact with and adopt these technologies [30, 32]. The in-
creasing exposure to “intelligent” technology in the home
raises important questions about the ways that children under-
stand and interact with it, and how this in turn may impact their
development, attitudes and behavior. In a previous study we
discovered that children (6-10 years old) considered personal

home assistants (Amazon’s Alexa, Google Home) and smart
toys (Anki’s Cozmo robot, the My Friend Cayla doll) as more
intelligent than they are even if these devices could not always
answer their questions. This prompted us to further investi-
gate how children perceive the intelligence of these devices in
comparison with human or animal intelligence.

To investigate this question, we ran a pilot study where chil-
dren watched videos of a small robot (Anki’s Cozmo, see
Figure 1) and a real mouse solve a maze. We invited children
to compare how they would solve the maze by tele-operating
the same robot through it. We asked children which agent
was smarter in solving the maze and why. During these pilot
sessions, we invited a few parents to participate in the exper-
iment, too. Interestingly, we observed that in several cases,
children and their parents expressed very similar choices and
arguments even though they participated in the experiment
separately.

Based on this observation, we conducted a full study, reported
here, where we recruited pairs of children and their parents to
participate. We pose the following research questions:

• Developmental differences. How similar are parents and
children in their attributions of intelligence and their mental
models?

• Intelligence attribution. How do parents and children at-
tribute intelligence to different agents based on solving the
same maze?

• Strategy vs outcomes. Are participants more focused on the
strategy of the agent or the outcome?

Building on prior work, we explore through ontological, psy-
chological and developmental lenses, how children and parents
attribute intelligence to animals, people, and intelligent arti-
facts. We review prior research on children’s mental models
of intelligence and cybernetic intuitions of animacy, agency,
and causality. We contextualize these prior psychological find-
ings in families’ relationship to technology. While several
previous efforts have explored foundational questions around
intelligence attribution and family learning culture, our study
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is the first one to explore how parental attitudes and under-
standing of intelligent devices influence children’s behavior
and development when interacting with these computational
objects. We believe this investigation is particularly important
to help motivate and inspire a culture of critical thinking about
such technologies and a shift of power for families using these
devices. We also propose a series of guidelines for designers
and policy makers to support this.

RELATED WORK
In the following, we highlight previous work focusing on
young children’s conceptions of agents’ intelligence and be-
havior, their ability to make sense of such behaviors through
practice, and the import of parental influence in this process.

Mental models of intelligence
Intelligence is defined as the ability to acquire and manipulate
or act upon information in an independent way [6], an adapta-
tion of stability and change [38], or an expression of a learning
process that involves perspective taking and object construc-
tion [1]. Intuitions about intelligence are at the core of many
of the oldest lines of research in developmental psychology,
including animism [37], theory of mind [47], psychology and
biology [7]. Most of this work builds on distinctions between
perception, emotions, beliefs, intentions, and knowledge [15].

Intelligent agents such as robots, computers, and connected
toys are part of children’s everyday environments. These
agents are capable of autonomous decision-making, pro-
grammability, communication, adaptive behavior, and knowl-
edge accumulation. Children’s increasing exposure to these
”intelligent” devices raises questions about how children under-
stand their intelligence [43, 44, 2] and how children’s intuitive
distinctions between living and nonliving objects are chal-
lenged [36]. Young children learn to distinguish agents as
animate or inanimate, then use that distinction to guide their
attribution of various characteristics, including intelligence
[17, 18, 31]. Their ideas about the capabilities of living things
together with their understanding of intelligence and the func-
tions of the brain develop with age [35, 39, 24, 29].

Developmental psychology literature suggests that domain-
specific knowledge is often a better predictor of knowledge
representations and beliefs than developmental factors [9, 11,
21]. Children who have experience in a particular field ex-
press more complex knowledge representations than novices
of any age [10]. Building on children and technology litera-
ture [26], we hypothesize that as children gain experience and
exposure to technology, they will transition from the context
of their naive biology theories [20, 48] to start thinking about
computational objects as intelligent technologies.

We build on this work to further explore children’s intelligence
attribution patterns by asking children to compare different
agents’ intelligence as the agents perform the same task. This
allows us to study to what kinds of entities children attribute
social-emotional and cognitive abilities, how children might
draw those conclusions, and compare them with those of their
parents. We hypothesize that children who grow up with
intelligent agents will develop new ways of thinking about
them, and potentially at younger ages. As such, one goal of

this study is to investigate how children’s ideas about agents’
intelligence change as they gain more insight into how the
agents perceive the world and make decisions. One way of
enabling this perspective is to have children teleoperate the
agent to do the task from the agent’s vantage point. Building
on prior research on conceptual change in learning [12, 45, 4],
we enable the children to experience this hands-on activity in
order to investigate how their mental models about the robot
could be refined to understand more in depth how the agent
works, rather than just observing its superficial characteristics.

Children’s cybernetic intuitions of animacy, agency, and
causality
Not all computational objects can be readily classified as
animate or inanimate due to their varying anthropomorphic
characteristics; they can only be placed along an animate-
inanimate continuum [28, 41]. Furthermore, children develop
their understanding of technology along this continuum. Their
sense-making process transitions from an initial observation of
physical characteristics of a device to an understanding based
on definitions. Understanding based on observed characteris-
tics, e.g., a robot, as an object ”with wheels and sensors”, is
typically subjective, where an understanding based on defini-
tions, e.g., the description of a robot as a programmable object,
has a more universally applicable character [22, 40].

Prior studies recognize programmability as a key concept in
a domain-specific understanding of ”intelligent” objects [14].
Before children are able to grasp this concept they make sense
of computational objects’ behavior by personifying them[5].
This personification should not be regarded as a naive strategy
but as a foundational step in children’s building of knowl-
edge anchored in their primary distinction of self versus the
world [2]. Work on children’s cybernetic intuitions [43, 3] and
children and machines [20] has shown that children do not
distinguish between causation and agency in the ways most
adults do. Instead, children older than 5 years old interpret
mostly any transaction between animate and inanimate enti-
ties in terms of who controls whom, either through direct or
mediated action. Introducing these computational objects as
new ontological entities that are neither animate nor inani-
mate allows children to introduce new tools to their cognitive
ecologies [26, 25, 27, 42].

Families and technology
Research on families’ interactions with technology is a grow-
ing area with implications for the design of new agents [32].
As devices become more human-like in form or function, hu-
mans tend to attribute them more social and moral character-
istics [26]. This raises the question of parental engagement
and interventions in children’s interaction with connected toys
and intelligent agents [13]. Prior studies showed that parents
scaffold children’s behavior when interacting with robots or
interactive devices together [8, 16].
Our work continues the theme of exploring parent and child
reactions to technology by examining their attributions of
connected toys’ intelligence and by analyzing the influence
parents might have over their children’s mental models. In
this work we seek to better understand parent’s and children’s
attribution of intelligence for animate and inanimate agents,
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Participant Demographics

Group N Age (Mean, S.D.) Female Ratio

Children (4-7 years) 20 5.35, 0.99 40.00%
Children (8-10 years) 10 9.00, 0.94 30.50%
Parents (30-54 years) 23 40.43, 6.41 66.67 %

Table 1. Demographics of participants in this study, separated into chil-
dren and parents.

in order to provide parents and educators with relevant recom-
mendations.

STUDY METHODS
The goal of our study is to advance research on children’s
conceptualization and interaction with smart toys [43, 2] given
that these devices are much more advanced, widely commer-
cially available, and children at younger ages have access to
them.

Selection and Participation of Children and Parents
We recruited 53 participants (30 children and 23 parents)
through announcements to local parent groups, mailing lists,
and social media posts. In total, we had 30 pairs of children
and their parents (some children were siblings). Children
ranged from 4-10 years old (mean = 6.77, SD = 2.06). From
the survey respondents, we scheduled interviews with thirty
pairs of participants. Children and their parents participated
in the study separately. Three of the children had previously
used Cozmo, our robot, before this study. All participants
were from the Greater Boston area, Massachusetts, U.S.A.
Further information about the gender and age of participants
are detailed in Table 1. Before beginning the study, parents
and participants over the age of 7 signed assent forms.

Materials
Agents. The agents that we chose as stimuli for the study
were a mouse and a robot (Cozmo), in Figure 1. Cozmo is a
small robotic toy vehicle with with an expressive LED face,
moving arm, moving head, and front camera. Operators can
see through Cozmo’s camera, control Cozmo’s arm, move
Cozmo’s head, drive Cozmo, and trigger animations remotely.
Videos of the agents were shown to participants as part of the
questionnaire. The robot was also tele-operated by participants
when solving the maze.

Maze. We used a maze-solving task to create a common refer-
ence for participants to compare the mouse, robot, and their
own performance. We wanted a problem-solving task with a
clear goal where agents can display different strategies. Figure
2 shows the physical maze made out of Lego where partici-
pants could tele-operate the robot to try to find the cheese. The
maze we had in our study room had the same level of com-
plexity like the mazes shown in the mouse and robot videos
(equal number of corners and turns).

Tele-operation station. We set up a station with a laptop that
allowed children and adults to see through the robot’s camera
and control the robot’s movements to navigate the maze (Fig-
ure 3). Participants could also move the head up and down to
adjust the viewing angle.

Figure 1. Agents used in the study: a mouse and the Cozmo robot from
Anki. (https://www.anki.com/en-us/cozmo).

Figure 2. Lego maze used in the study

Figure 3. 10 years old participant tele-operating the robot
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Figure 4. Examples mouse and robot videos

Figure 5. Study Setup: (a) Getting familiar with the maze; (b) Tele-
operate the agent to solve the maze;(c) Take the intelligence attribution
questionnaire and pre-test

Intelligence attribution questionnaire
The questionnaire consisted videos depicting the mouse or
robot trying to find cheese in a maze. The questionnaire was
presented on a tablet, examples are shown in Figure 4.

Study Procedure
Children and parents were invited to participate separately
from one another. Each participant watched videos of mice
and robots solving a maze. The participants were also invited
to solve the maze by navigating a robot from a first-person per-
spective. We interviewed participants after each encounter to
understand their model of the agent’s minds, which agent they
believed was smarter, and how they compared the intelligence
of the agents to themselves.

Pretest Upon arrival, participants were shown the study maze
(Figure. 2) and asked if they ever solved a maze before. Half
of the participants were assigned to solve the maze before
watching videos and doing the intelligence attribution ques-
tions, and the other half did it after. Alternating the order of
solving the maze before or after did not impact participants’
answers.

During the intelligence attribution questions, each participant
watched six videos depicting a mouse and or the Cozmo
robot attempting to solve a maze (Figure. 4). The mouse
or robot each appeared in three videos deploying a different
strategy: strategic, lucky, or random. In the strategic case,
agents demonstrated a systematic exploration of every option

without ever returning to the same area twice. In the lucky
case, the agent arrived at the goal on the very first try – without
making any wrong turns or checking unnecessary sections of
the maze. In the random case, the agent would arbitrarily
make turns, often heading down the same path multiple times,
before finally arriving at the goal. The three conditions were
significantly different. The authors introduced the videos in
a neutral manner to the participants by saying we will watch
three different videos of a mouse or a robot trying to solve a
maze and were shown in random order for each participant.

When the agents were introduced to study participants we
did not mention if they are seeing the same mouse/robot or a
different one. When we were asked if it is the same agent we
returned the question to the participants ("What do you think?
Why?").

After each video, the participant rated the intelligence of the
agent on a scale of 1-5 (1 = not very smart, 5= very smart),
as seen in Figure 4. After they watched all three videos of
each agent, participants described how the agent solved the
maze. Finally, participants chose which agent they believed
was smarter.

Solving the maze via the agent Participants drove the robot
from the tele-operation station shown in Figure 5b. A re-
searcher demonstrated the driving controls and offered to drive
for the very young participants (4-5 years old) if they had dif-
ficulties with the controls. When assisting with driving, the
researcher asked for directions at every corner.

Post-test After solving the maze, participants answered six
questions about their own experience in solving the maze. We
asked whether the maze was hard or easy. We also asked them
to explain their strategy. After solving the maze and watching
all the videos, we asked if they thought the mouse or the robot
was better at solving the maze than they were. Participants
could request to watch any of the mouse or robot videos to
answer these questions.

FINDINGS
In the questionnaires, we asked participants to explain how
the agents solved the maze, how the participants themselves
solved the maze, which agent they believed was smarter, and
whether they believed any of the agents were smarter than
themselves. We probed participants for their reasoning so that
we could analyze the arguments that led to their decisions. The
following sections detail our findings arranged by our guiding
questions from the introduction.

Developmental differences
How similar are parents and children in their choices and
mental models?
First, we measured how similarly each child-parent pair an-
swered the intelligence attribution questions after watching
three different strategies of the mouse and robot solving the
maze. The difference between two participants’ ratings were
normalized and weighted equally across six questions. Over-
all, participants including children and parents answered quite
similarly to each other (m=0.247, σ=0.11). We analyzed how
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similarly each child-parent pair answered the questions com-
pared to each other: Do children attribute to intelligence more
closely to their parents compared to with other children and
adults? Figure 6 presents agent intelligent rating distances
between overall and younger and older child-parent pairs com-
pared to distances between each participant and all other chil-
dren and adults (non-child-parent pair). While we did not
see significant difference between non-child-parent pairs, all-
age child-parent pairs, and age 4-7 child-parent pairs, we saw
significant similarity among older children (age 8-10) and
their parents compared to the younger group (p=0.024) and
non-child-parent group (p=0.028). This result suggests that
by the age of eight, children form their perception of agent
intelligence with heavy influence from their parents’.
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Figure 6. Normalized distance of agents intelligence ratings between
child-parent pairs.

After transcribing the interviews, we analyzed children’s and
parents’ answers to our structured questions. We coded these
arguments using an approach proposed by Glasser et al. [19],
where we iteratively developed a set of themes. Inter-rater
disagreements were discussed until a consensus was reached.
Participants referenced different aspects of the agents in their
explanations, which we categorized into six types: sensory,
agency, cognition, social-emotional, strategy, and performance.
Both children and parents often used more than one kind of
argument in their descriptions of the agent behavior.

• Sensory. Agent collects information using senses. E.g. “the
mouse smelled the cheese”

• Agency. Kind of agent or kind of entity controlling the
agent. E.g. “it is a robot and a robot just knows”, “it was
programmed where to go”.

• Cognition. Mental abilities of the agent. E.g. “it remem-
bered”, “it had the knowledge”.

• Social-emotional. Emotions or wants of the agent. E.g. “the
mouse wants the cheese”, “it was tired”.

Attribute Category Children(4-7) Children(8-10) Parents

Sensory 58% 45% 52%
Strategy 26% 91% 30%
Performance 32% 36% 9%
Cognition 37% 0% 35%
Agency 16% 27% 39%
Social-emotional 5% 0% 0%

Table 2. Participants’ descriptions of the robot

Attribute Category Children(4-7) Children(8-10) Parents

Sensory 53% 64% 39%
Strategy 32% 64% 70%
Performance 26% 18% 17%
Cognition 26% 9% 43%
Agency 0% 0% 0%
Social-emotional 16% 0% 0%

Table 3. Participants’ descriptions of the mouse

• Strategy. Method the agent solved the maze. E.g. “it looked
around and saw where the cheese was and went to it”.

• Performance. Characteristics of the agent when solving the
maze. E.g. “it went fast”, “I bumped into the walls a lot”.

Although children and parents completed the study indepen-
dently from one another, we saw instances where pairs gave
very similar answers. In 21 of our 30 pairs, children and their
parents chose the same agent as being more intelligent. Ten
parent-child pairs used very similar language when express-
ing their reasoning around how they perceived the agents’
intelligence.

Tables 2 and 3 show how participants described the agents.
Overall, we saw that children mostly focused on sensory abili-
ties and strategy when describing the mouse and robot. Parents
focused on different aspects depending on the nature of the
agent. We see in Table 3 that, for the mouse, parents focused
on strategy and cognition. Conversely, for the robot, most
parents focused on sensory ability and agency, shown in Table
2. When children and parents compared their way of solving
the maze to the mouse or the robot, they talked more about
strategy than they did when just watching the videos of the
mouse and the robot.

We compared how many children and parents used a kind of
argument to describe the agents using a series of Fisher exact
tests. Children were significantly more likely to talk about
the robot’s performance, whether it completed the maze and
how quickly, than parents were (p = 0.048). Other interesting
differences we saw were that children referenced the cognitive
abilities of the mouse and robot less often than the parents.

The only references made to agency were for the robot. All of
the parents who made this argument believed that the robot was
programmed. Children, on the other hand, either suggested
that it was programmed, that someone was controlling it, or
that robots are just naturally good at solving mazes.
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Figure 7. Children and parent responses to “Which agent is smarter?”

No parents talked about social-emotional characteristics of
the agents, but some children did. This confirms the findings
from Weisman’s prior study [46] where children were asked to
evaluate a variety of mental capacities of beetles versus robots.
Relative to adults, children in this study attributed greater
socio-emotional capacities to beetles and robots, suggesting
that intuitive ontologies of mental life could be critical for
making sense of children’s developing understanding of the
social world [23].

Finally, when discussing performance, parents would refer to
the mouse as being able to solve the maze quickly. Children
said the opposite, claiming that the robot was faster and the
mouse backtracked a lot. This suggests that children were
more likely to overestimate the capacity of the robot.

Our findings show differences in socio-emotional and strategy
arguments between children of different ages. We divided chil-
dren into two groups: younger children, 4-7 years old and older
children, 8-10 years old. This separation was chosen based on
previous literature that found developmental differences be-
tween children around the age of 5. We compared younger and
older children using a series of Mann-Whitney U-tests. We
saw a significant difference between the number of younger
and older children who referenced the social-emotional abili-
ties of the mouse (p = 0.041). Although it was not statistically
significant, we also saw that older children referred more to
the strategy of the mouse (p = 0.057).

Intelligence attribution
How do parents and children attribute intelligence to different
agents?

The majority of children and parents said that the robot was
more intelligent than the mouse (determined with Binomial
tests p = 0.013 and p = 0.0173, respectively). When compar-
ing the agents to themselves, Figure 8 shows that there were
no large differences between children and parents. About half
of the participants said that both agents were smarter than
them, and no one said that just the mouse was smarter.

Many participants referred to their answers about whether the
mouse or robot was smarter when comparing the agents to
themselves. For example, parents who felt that the mouse was

Figure 8. Children and parent responses to “Is the mouse smarter than
you? Is the robot smarter than you?”

Figure 9. Average number of rating given to mouse by strategy (scale of
1-5 where 1 is not very smart, 5 is very smart).

smarter than the robot felt that they were definitely smarter
than a mouse. Children who said that neither agent was smarter
also said that the robot was smarter than the mouse and rea-
soned that a robot lacks human ingenuity, therefore neither
agent could be smarter.

Strategy vs outcomes
Are participants more focused on the strategy of the agent or
the outcome?
To analyze whether participants focused on strategy or out-
comes, we looked at the different intelligence ratings given to
each mouse and robot with different strategies. In the mouse
videos, the lucky mouse was rated as more intelligent than the
other mice. This mouse completed the mazes very quickly,
showing that participants focused on results over strategy when
deciding if the mouse was intelligent. Interestingly, Figure 9
shows that the random mouse received ratings that were simi-
lar to the strategic mouse. Participants penalized the strategic
one for taking longer to solve the maze although the strategic
mouse clearly did not backtrack as often.
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Figure 10. Average number of stars given to robot by strategy (scale of
1-5 where 1 is not very smart, 5 is very smart).

Participants interpreted the robotâĂŹs maze solving differ-
ently. Figure 10 shows that the strategic and the random robots
received similar ratings, while the lucky one received lower
ratings. The fact that the lucky robot made no mistakes led par-
ticipants to believe that it was given the answers ahead of time.
Therefore, contradictory to the way the mouse was evaluated,
this robot was penalized for its quicker performance.

DISCUSSION
We found that some of our results are explained by previous
work. For one, many more participants believed that the robot
was smarter than the mouse, although we designed the ex-
periment to make the mouse and robot equal. The difference
between the number of participants who chose the mouse and
the robot is likely the result of previously held beliefs about
the intellectual superiority of devices or animals, as detailed
in Bernstein et al. [6]. During the study, several children
and parents expressed their underlying expectations for both
agents which brought to light contrasting points of view:

• “I mean, robots are already smart”- Participant 1, 7 years
old.

• “I am not sure I would call the robot smart, it’s not doing
anything smart, it is just going around and when it sees [the
cheese], it sees it”- Participant 1’s mom.

However, their perspectives changed after trying to solve the
maze by tele-operating the robot. Solving the maze allowed
participants to experience how the mouse or the robot might
see the maze. Many of the children requested to go and see the
maze from above when they were getting lost. Some parents
expressed difficulty in trying to remember the path or orient
themselves.

• “The maze was a lot harder for me as I couldn’t see
everything”- Participant 2, 10 years old.

• “This was difficult. You are used to go where you can see
with your eyes. You move your body.”- Participant 2’s mom.

We saw that children relied on observable characteristics like
performance, strategy, and sensory abilities instead of unob-
servable characteristics like cognition. This is in tune with
prior work from Kiel et al. where children built their argu-
ments first on observed characteristics [28]. Younger children
(4-5 years old) were very creative with their arguments when
their expectations contradicted their observations. For exam-
ple, Liam (4 years old) said the mouse was very smart because
he was very fast and he was very fast because he was very
hungry. Then, after he watched the robot videos, he changed
his mind and said the robot was even smarter and faster. When
asked to clarify, he projected his understanding of the mouse
onto the robot, “[The robot] was very fast because he was very
hungry”.

Prior work showed that if children think of robots as analogous
to an animal, they are more likely to apply a definition of intel-
ligence that includes both cognitive and social/psychological
characteristics ([6]). Our analysis showed that children who
saw the robot as more similar to the mouse tended to anthro-
pomorphize it more, and did not necessarily see it as more
intelligent. For example, Participant 10, who is 8 years old
wasn’t sure how the robot knew where to go. He asked, “does
the cheese smell like anything for the robot?” When the re-
searchers replied they don’t know if the robot can smell the
cheese, he added that the “mouse was smarter because he has
a nose to smell cheese”. Sometimes children would attribute
certain “vitalistic” attributes to the robot and later change their
mind. Participant 6 (5 years old) had the following exchange
with one of the researchers:

• “It’s a robot and sometimes robots can get to places fast.”
[How do you think it gets to places?]

• “Like...With it’s feet.”[How does it know where to go?]

• “Because of its brain?” [Do robots have brains?]

• “Hmm...No..?”[Do you think Cozmo has a brain?]

• “Hmm..He is too little to have one...”[So how do you think
he figures it out if it does not have a brain?]

• “With...So, with his eyes...?”

He concluded that the robot “is a rat because he follows the
cheese” and that only the mouse has a brain “but very little”.
When participants perceived the robot more as a technological
device, they either referred to its observable characteristics
(sensors, camera, motors), or to its inferred capabilities, as-
suming either that someone was controlling it or that it was
programmed to behave in a certain way. Participant 5 said she
didn’t know the robot’s strategy, “because he wasn’t driving
the computer was driving him. [What do you think the pro-
gram told him to do?] Not to bump into the wall and to go
around”. Charlotte said the robot used “sensors and trial and
error just like the mouse”, she then added that the robot “never
tried to go back where they went because they remembered”
and that the robot seemed to be smarter “because it could see
things in a way that the mouse couldn’t”.

Children and their parents would view the fact that the robot
has been programmed either as proof of its superior intellect
or an explanation of why it couldn’t be smart.
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• “I would choose the mouse as smarter because the mouse is
an animal, the robot is programmed by humans”- Participant
3, 9 years old.

• “Either the robot is being driven by a person with a remote
control, or by software, and either way it’s not smart because
it’s not alive.”- Participant’s 3 mom.

• “The mouse was similar to the way the robot solved the
maze. The robot was more fluent. It’s similar to the mouse,
but since the robot was programmed by humans it could go
through the maze more easily.”- Participant 4, 8 years old.

• “The robot is controlled by a human, and the human may
be smarter than the mouse” - Participant’s 4 mom (said the
robot as smarter than the mouse).

Programmability was recognized as an important concept to
help children make sense of how the mind of computational
objects might work [14]. In our study we saw that children
and parents were both confused when asked if the fact that the
robot was programmed means it is intelligent. We hypothesize
that if participants could probe more the extent to which the
robot’s program would allow it to autonomously learn and
react in new scenarios (different mazes) they would be less
confused.

The need for this kind of probing scenario, where children
could gradually build an understanding of emergent behavior
by modifying the environment, was also explored by Mioduser
et al. and Chi et al. [34, 10]. They showed that children are
capable of developing an emergent schema when they can
physically test and debug their assumptions by modifying the
environment where robots perform a task. In our study, many
of the children’s arguments about the agent’s strategy became
more complex after they got to solve the maze by controlling
the robot. This lead us to wonder to what extent we can use
tangible abstractions for reasoning (e.g. solving a maze) to
help children gradually develop a higher level of understanding
of computational objects. We believe that exploring children’s
mental models of new technologies in playful and interactive
ways, such as solving a maze together, will help to further
understanding in their cognitive and conceptual development.

Lastly, another important discussion is around the question of
how parents play a role in children’s understanding. The re-
sults we’ve presented regarding how closely children attribute
agent intelligence to their parents align with prior studies show-
ing parents’ tendency to scaffold children’s behavior while
playing with robots or using other technologies such as in-
teractive books [16, 8]. As our result suggests, by the age
of eight, children already build their thoughts and perception
of agent intelligence heavily influenced by their parents. We
invite parents to be mindful of how they interact and describe
different connected toys in front of their children. We also
hope that families will engage more often in conversations
about the inner workings of these devices and their influence
in their daily life. Therefore, in addition to building children’s
understanding of technology it is also important to prepare
parents so that they can better assist their children.

STUDY LIMITATIONS
Our task was well-defined and didn’t allow for richer varia-
tion in the attributional judgments that children and parents
expressed. We chose to start with a goal-driven, well-defined
scenario to make it easier for children to recognize the agent’s
success and strategies. We also recognize that a larger sam-
ple size and a more diverse population would have potentially
provided us with more insights. For example, looking at partic-
ipants with varying levels of domain-knowledge, experience
with technology, and cultural backgrounds would produce
very different results in this study. Despite these limitations,
we believe that this work represents an important first look
at parent and child interactions and intelligence attribution
towards different types of agents. We hope that it will inspire
future and ongoing work in children’s technology education
and child-agent interaction.

FUTURE WORK
Next, we would like to further explore if we see similar at-
tributions and arguments when agents are completing more
complex problem-solving tasks or tasks without a clear goal,
such as social interaction tasks. The views of teenagers and
young adults may also be interesting perspectives. Building
on this initial study, we also plan to further explore long term
effects of attributing agency, intelligence to ’smart toys’. Ad-
ditionally, we consider it would be important to investigate the
potential implications for different models of schooling and
potential constant interaction with ’smart toys’ instead of ani-
mals. We also wish to further explore the causal relationship
between how children imitate their parents and understand
other minds ("Like me hypothesis")[33].

CONCLUSION
Based on our findings, we see an opportunity for a new way
to introduce intelligent agents with more transparent mental
models for this class of ontological entities. We observe
that older children (8-10 years old) and parents are similar
in how they tend to evaluate which agent is smarter while
younger children (4-8 years old) are more open to build
meaning through play and experience. This suggests the
importance of early interventions which would equip young
children to better understand the mind of the robot through
making, experiencing and perspective taking. Here we see
an opportunity to create new toolkits for young children
and parents to interact with intelligent agents in ways that
reveal their inner workings and invite families reflections and
conversations.
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