Art Installations & Demonstrations

IDC 2018, June 19-22, 2018, Trondheim, Norway

Testudinata: A Tangible Interface
for Exploring Functional

Programming

Kritphong Mongkhonvanit
Claire Jia Yi Zau

Chris Proctor

Paulo Blikstein

Stanford University
Stanford, CA 94305 USA
zau@stanford.edu
kritphon@stanford.edu
cproctor@stanford.edu
paulob@stanford.edu

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the owner /author(s).

Copyright held by the owner/author(s).

IDC 18, June 19-22, 2018, Trondheim, Norway
ACM 978-1-4503-5152-2/18/06.
https://doi.org/10.1145/3202185.3210762

493

CCS Concepts

eHuman-centered computing — Interaction devices;
Collaborative interaction; eSocial and professional
topics — Computational thinking; Informal education;
eApplied computing — Interactive learning
environments; Collaborative learning;

Author Keywords
Functional Programming; Computer Science Education;
Tangible User Interface

Abstract

Learning to program is difficult for most children. Most of
the interfaces designed to help children experience and
understand programming are based on imperative
programming. However, early exposure to functional
programming have been found to have many benefits over
imperative programming. We describe a tangible
interface, Testudinata, that helps to make a fundamental
concept of functional programming — function
composition — more approachable to younger learners in
elementary and middle school. Using Testudinata, learners
can design, implement, and test various compositions of
pre-made functions on a tangible user interface (TUI),
while observing and comparing results on a graphical user
interface (GUI). Through the combination of a TUI and
GUI, the learners will be able to gain basic understanding

https://doi.org/10.1145/3202185.3210762

Art Installations & Demonstrations

of of function composition in a fun and engaging way.

Background

Functional Programming

A programming language creates a framework to translate
ideas into machine instructions, often by providing a
model of computations as a mean for thinking about how
to solve a problem. Imperative programming casts the
computer in the role of sequential instruction follower and
emphasizes control of sequential operations. In the case of
functional programming, programs are constructed
through composition of functions[4]. Functional
programming encourages thinking about the problem itself
— the what — rather than the sequential nature of the
underlying computing engine — the how[5].

Unfortunately, learning functional programming can be a
daunting tasks for beginners, especially children. There
are many programming environments designed for
children, but most are designed for imperative
programming. Those with have functional capabilities
often do not actively encourage the use of functional
programming. For example, SNAP! is a visual
programming language similar to Scratch that has several
functional programming facilities such as first-class
functions and full closures. However, programming in a
functional style in SNAP! requires the leaner to be careful
not to accidentally mutate the state of the program, a
task that is likely to be difficult for beginners.

Why Learning Functional Programming Matters
Functional programming advocates claim that the
paradigm leads to programs that are more concise, written
quicker, and more robust. This makes them more
amenable to formal reasoning and analysis and can be
executed more easily on parallel architectures[3]. These

494

IDC 2018, June 19-22, 2018, Trondheim, Norway

Figure 1: An artwork made in Testudinata

properties have positive implications for learning. Fisler
found that students who are taught functional
programming before imperative programming demonstrate
better performance on Soloways Rainfall Problem. This is
because functional programming encourage the use of
higher-level structures and avoidance of 10, which
significantly reduces the possibility of making many kinds
of common errors[1].

Tangible User Interface

Horn et al. found that, for informal programming
activities, tangible user interfaces (TUls) are more inviting
than graphical user interfaces (GUIs) for women and
children, meaning that they are more likely to choose to
interact with it. They also found that, in general, people
are more likely to collaborate actively with TUI, and
children are more likely to take a leading role in the
activity[2].

Art Installations & Demonstrations

nomol_okojoiohogof

Figure 2: Diagram showing relationship between the position
of function plates and the resulting composition of functions

Design

Programs in Testudinata are built purely by composing
pre-made functions together. Each function accepts
position and time as parameters, modify them in some
way, and returns the resulting position and time. These
functions can be divided into two main categories: motion
function and time functions. Motion functions describe
movements that allow the user to display a shape on the
screen. When two movement functions are composed
together, it produces a result equivalent to adding the
parametric equations describing their movements
together. All movement functions are made to repeat
every one second to make it easier to predict the result of
compositions.

Time functions modify the time for functions that follow
it. Speed up and slow down functions increase and
decrease the rate of the flow of time for all functions that
follow it. The delay function adds an offset to the time.
This causes subsequent movement functions to produce
coordinates slightly earlier than they otherwise would
have.

Testudinata’s tangible user interface is comprised of a
pipe and a set of plates. The plates represent functions
that the learner can compose together to build programs.

495

IDC 2018, June 19-22, 2018, Trondheim, Norway

\ AN AN AN \ < . AN < N \ D \\ N

Figure 3: Diagram showing how plates are affected by time
functions. Suppose function 7 multiplies the time by 3, and
function [adds 1, then at time ¢t = 2, the white plates will get
t = 2 as one of their inputs, the red plates will get

t =14(2) = 2-3 =6, and the green plates will get
t=13(2)=(12-3)+1=T.

The learner builds the program by putting the plates in
slots on the pipe. This interface makes it easy to
re-arrange functions in different orders, encouraging the
learner to explore different compositions.

Testudinata is intended to be used as a “cultural building
material” similar to LOGO. Although it is more restricted
than LOGO in general because programs need to be built
by composing pre-made functions, it is more expressive
within its domain; it is possible to create complex shapes
by composing just a few functions, making it a more
powerful as an artistic tool. That said, Testudinata still
remain usable for some non-art tasks. For example, in the
clock example given by Papert[6], learners could use
Testudinata to create clocks by creating motions that
repeat with a certain interval.

Future Work

One way to improve on the current design would be to
add functionality for examining intermediate values of
functions, which will encourage the learner to observe how
the result of the composition of functions evolves as it
passes through each function. We initially planned to
make it possible to insert probes into slots between the
function plates, and have the screen display the result of
the functions up to the point where the probe is inserted.

Art Installations & Demonstrations

Figure 4: Testudinata’s tangible
user interface

We had to leave this part out of the design due to time
constraint and implementation complexity.

Conclusion

Testudinata is a simplified programming environment with
a tangible interface that aims to give learners exposure
and basic intuition for functional programming in an
engaging and approachable way. It allows learners to
construct programs by composing pre-made functions
together to generate various kinds of shapes. Through the
process of experimenting with various combinations and
orderings of functions as well as getting constant
immediate feedbacks from the changed in the displayed
shapes, the learners gains familiarly and basic intuition for
function composition, a fundamental concept in functional
programming.

Acknowledgements

We would like to thank Richard Davis and the TAs for
Beyond Bits and Atoms: Designing Technological Tools
course at Stanford University for their guidance and
support.

REFERENCES

1. Kathi Fisler. 2014. The recurring rainfall problem.
Proceedings of the tenth annual conference on
International computing education research - ICER 14

496

IDC 2018, June 19-22, 2018, Trondheim, Norway

(2014). DOT:
http://dx.doi.org/10.1145/2632320.2632346

. Michael S. Horn, Erin Treacy Solovey, R. Jordan

Crouser, and Robert J.k. Jacob. 2009. Comparing the
use of tangible and graphical programming languages
for informal science education. Proceedings of the
27th international conference on Human factors in
computing systems - CHI 09 (2009). DOI:
http://dx.doi.org/10.1145/1518701.1518851

. Paul Hudak. 1999. The Haskell School of Expression:

Learning Functional Programming Through
Multimedia. Cambridge University Press, New York,
NY, USA.

. John Hughes. 1989. Why Functional Programming

Matters. Comput. J. 32, 2 (April 1989), 98-107. DOI:
http://dx.doi.org/10.1093/comjnl/32.2.98

. Milena Vujosevic Janicic and Duan Toi. 2008. The

role of programming paradigms in the first
programming courses. (2008).

. Seymour Papert. 1987. Computer Criticism vs.

Technocentric Thinking. Educational Researcher 16,
1(1987), 22. DOI:
http://dx.doi.org/10.2307/1174251

http://dx.doi.org/10.1145/2632320.2632346
http://dx.doi.org/10.1145/1518701.1518851
http://dx.doi.org/10.1093/comjnl/32.2.98
http://dx.doi.org/10.2307/1174251

	Background
	Functional Programming
	Why Learning Functional Programming Matters
	Tangible User Interface

	Design
	Future Work
	Conclusion
	Acknowledgements
	REFERENCES

