
Sonification Blocks: A Block-Based 
Programming Environment For
Embodied Data Sonification 

Jack Atherton 
Center for Computer Research in 
Music and Acoustics 
Stanford University 
Stanford, CA, USA 
lja@ccrma.stanford.edu 

Paulo Blikstein 
Graduate School of Education 
Stanford University 
Stanford, CA, USA 
paulob@stanford.edu 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the Owner/Author. 

IDC ‘17, June 27-30, 2017, Stanford, CA, USA 
© 2017 Copyright is held by the owner/author(s). 
ACM ISBN 978-1-4503-4921-5/17/06. 
http://dx.doi.org/10.1145/3078072.3091992 

Abstract 
High school students often struggle to find the motivation 
to learn to program. Music can be a powerful motivator for 
these students, but existing tools that combine music pro­
duction with programming often fail to meaningfully engage 
students with core computer science concepts. Sonification 
Blocks was created to shift the focus back toward big ideas 
in programming. Sonification Blocks is a programming lan­
guage for data sonification, the process of creating audio 
algorithms and controlling them with streams of data. Its 
implementation as a block-based language with clear, in­
teractive data visualizers allows high-school-aged learners 
to develop computational literacy. Furthermore, the act of 
manipulating sound parameters with data streams that are 
controlled through body motion may help connect learners 
with powerful ideas in programming and data science. 

Author Keywords 
computer science education; music; sonification; embodied 
cognition; constructionism 

ACM Classification Keywords 
K.3.2 [Computers and Education]: Computer and Informa­
tion Science Education; H.5.5 [Information Interfaces and 
Presentation (e.g., HCI)]: Sound and Music Computing 

Demonstration IDC 2017, June 27–30, 2017, Stanford, CA, USA

733

http://dx.doi.org/10.1145/3078072.3091992
mailto:paulob@stanford.edu
mailto:lja@ccrma.stanford.edu


Figure 1: The Sonification Blocks 
workspace. Sonification Blocks is 
implemented in HTML, CSS, and 
JavaScript using Google Blockly 
and Web Audio [5, 8]. As such, it is 
cross-platform and free to use in 
any modern browser. Learners can 
save programs in the local browser 
storage, download and upload 
programs as XML files, and share 
web links that recreate their 
workspace when opened. These 
features allow learners to share 
their creations publicly and to 
easily collaborate with peers. 

Figure 2: A program written in 
Sonification Blocks, sonifying the 
device’s linear acceleration along 
the x axis by connecting it to the 
frequency of a triangle wave 
oscillator. Running this program 
also shows the live data processing 
visualization of Figure 5. 

Introduction 
Sonification Blocks (https://ccrma.stanford.edu/~lja/sonification/) 
is a web-based learning environment designed to introduce 
high-school-aged learners to introductory concepts in pro­
gramming, data processing, and computer sound produc­
tion. Data sonification is the act of controlling the parame­
ters of an audio algorithm with values from a stream of data 
for the purpose of learning about the data. With Sonifica­
tion Blocks, learners construct audio algorithms in a block-
based programming language, controlling parameters of the 
sound by using sensors built into the device on which they 
program and by shaping the output of those sensors with a 
variety of “atomic” data processing functions (atoms). Our 
hope is that learners using Sonification Blocks will make 
progress toward two key components of computational lit­
eracy: object oriented thinking, especially in the domain of 
sound, and the processing and connection of flows of data. 

Our work is grounded in the constructionist tradition, in that 
students learn by building and sharing personally mean­
ingful sonifications [1]. Sonification Blocks also draws on 
ideas from embodied cognition in allowing the application of 
body-based cognition to a non-situated activity [10]. Play­
ing a physical instrument is a situated activity, as musicians 
can feel their instrument’s form and vibrations (the methods 
of generating sound) as they play. Audio programming di­
vorces the thoughts associated with making sound from the 
production of sound, both in time (first write a program, then 
run it) and in physicality (the sound mechanism is hidden 
inside a device and is not controlled by bodily actions). The 
use of physical sensors for the control of sonification pro­
grams allows learners to apply bodily intuition for motion to 
the relatively non-situated task of audio programming, and 
the continual recompilation that occurs whenever the code 
is changed reconnects thought and audio output in time. 

Background and Related Work 
Introductory computer science students often struggle to 
stay motivated in text-only paradigms [7]. Some researchers 
have turned to music and audio programming as a moti­
vator that works well across diversity of gender, race, and 
class [6, 7, 9]. A basic approach simply introduces the abil­
ity to play back or trigger audio files programmatically [2]. 
This ability is technically sufficient for some applications like 
games, but does not invite introspection about the act of 
sound generation itself. Tellingly, students who engage in 
sound triggering activities like making music videos engage 
less with core programming concepts like variables and 
control flow when compared to students creating games [2]. 

Two promising tools that use audio programming for com­
puter science education are EarSketch and BlockyTalky. 
EarSketch is a “computational music remixing” library used 
to motivate high school students with no music background 
through a comprehensive computer science curriculum [6]. 
However, its lack of physical interaction via sensors or con­
trollers prevents the use of bodily understanding during 
the music-making process. BlockyTalky is a block-based 
programming language and toolkit for creating sensor-
controlled synthesizers that can communicate with each 
other over the internet [9]. These devices helped children 
aged 11–14 learn about advanced computer science topics, 
but long delays between sensor readings and audio output 
diminished students’ ability to interpret how their programs 
were working. Also, the focus on creating music for a public 
performance led many students to mimic pop music rather 
than engaging with programming concepts. 

In the realm of data science, the Scratch Community Blocks 
extension motivated children aged 11–15 to start building 
a data science literacy by allowing them to construct per­
sonally meaningful visualizations of data about the Scratch 

Demonstration IDC 2017, June 27–30, 2017, Stanford, CA, USA

734

https://ccrma.stanford.edu/~lja/sonification/


Figure 3: All variants of waveform 
blocks and effect blocks. Each of 
these blocks can be set to one of 
several sub-types, such as triangle 
wave or lowpass filter. 

Figure 4: The data processing 
blocks. Here, a slider labeled “drag 
me” is fed through an exponential 
atom, followed by a gaussian atom, 
then scaled up. Figures 6 and 7 
show the live updating graphs that 
are shown when this block is run. 

Figure 5: The visualization of a 
data processing chain. Here, a 
data stream is sent as an argument 
to two data processing atom 
functions composed together, then 
scaled up to a larger value. The 
sliders, graphs, and scaled value 
all update in real time, and each 
slider can be moved manually to 
determine its impact on the rest of 
the data processing chain and on 
the audio algorithm. 

ecosystem [4]. However, it limited the notion of “data” to 
static information accessed through a database. Notably, 
users expected to be able to update visualizations in real 
time as the world changed, which was not possible due to 
the project’s slow query times and caching system. 

Design Overview 
Sonification Blocks focuses on the activity of data sonifi­
cation rather than the activity of making music. We were 
also intentional in choosing the layer of technical complex­
ity to expose to students (“selective exposure,” [3]). Data 
sonification allows users to engage with data in an immedi­
ate, time-varying way and to engage in programming sound 
without the distractions of composing or copying music. The 
top-level blocks of the language allow learners to connect 
audio objects to each other, to set parameters of those ob­
jects, and to pass time. Importantly, parameters can be set 
via the output of other audio objects and via the output of a 
data source, allowing complex audio signal chain configura­
tions and enabling the sonification aspect of the language. 

Audio Blocks 
The two audio object blocks are the waveform and effect 
blocks (Figure 3). Each block shows the frequency domain 
representation of the underlying audio object so that its ef­
fect on the sound can be understood visually and aurally. 

When one of these blocks is attached to a set parameter 
block, the parameter block updates its dropdown menu to 
show the parameters specific to the attached block. This 
behavior enables progress toward the set of learning goals 
that compose object-oriented thinking by instilling two no­
tions: first, that objects have properties that are held in 
common with similar objects but not with all objects; sec­
ond, that different object types belonging to the same larger 
category can be used interchangeably in some contexts. 

Data Processing Blocks 
The data blocks are linked together with the data process­
ing chain block (Figure 4). This block can be used in the 
parameter block instead of a number or audio object. It 
takes a live data source, shapes it according to one or more 
data processing atoms, then scales the result to a specified 
range and sets the parameter with that value. 

When a program is run, a live-updating chain of graphs and 
sliders representing the data processing flow of the pro­
gram appears at the bottom of the page (Figure 5). Each 
slider can be moved manually to affect the rest of the chain, 
allowing debugging at a fine-grained level. If more than one 
data processing atom is linked together, the graph of com­
posing each atom’s function together is shown (Figure 6). 
This graph can be broken apart into the constituent atoms 
to observe the effect of each individually (Figure 7). 

Sonification Blocks currently includes two kinds of data 
sources. Slider data sources let learners control the data 
flow by manually manipulating a slider located next to the 
visualizer chain, allowing them to explore the effect of each 
part of the chain at their own pace. Alternatively, when us­
ing a mobile device equipped with an accelerometer, learn­
ers can use the angular position, linear acceleration, or ro­
tational acceleration of their device as a data source. Using 
accelerometer data sources allows learners to understand 
their audio algorithms in an embodied way by manipulating 
the algorithms with subtle hand and body movements. 

Live Feedback 
Changes in data sources propagate to parameters in the 
audio algorithm without any perceivable delay. This low la­
tency allows learners to readily interpret the effect their ges­
tures have on their audio algorithm. Also, a running audio 
algorithm is updated immediately whenever the underlying 
program is edited, affording quick back-and-forth testing. 

Demonstration IDC 2017, June 27–30, 2017, Stanford, CA, USA

735



Figure 6: A combination graph, 
showing an exponential atom 
composed with a gaussian atom. 

Figure 7: The individual atom 
component graphs, broken apart 
from the graph of Figure 6. 

Figure 8: An example program 
comment (upper) and a mouse 
hover tooltip (lower). 

Figure 9: Shadow blocks in the 
toolbox, suggesting three different 
possible uses of the same block. 

Scaffolding 
Each block has a tooltip that explains what the block does 
whenever the cursor is hovered over it. Additionally, learn­
ers may load a number of example programs, which in­
crease slowly through topic complexity and program length 
and have comments to explain how each unfamiliar block is 
used (Figure 8). Within the toolbox menus where learners 
find blocks for their programs, the inputs to complex blocks 
are filled out with potential configurations using shadow 
blocks. These blocks are lighter in color, suggesting a par­
tial solution for how to use the parent blocks while also al­
lowing learners to fill in the inputs with their own blocks. If 
a block can be used in multiple ways, it appears multiple 
times in the toolbox with different shadow inputs to encour­
age learners to explore all the options (Figure 9). 

Conclusion 
Sonification Blocks is a block-based programming language 
for data sonification. It allows learners to program audio 
synthesis algorithms and control them with streams of data, 
encountering big ideas in object-oriented thinking and com­
puter music. Clear, interactive data visualizers show the 
effects of atomic data processors, allowing learners to start 
building a data science literacy. When using accelerometer 
data sources, learners can translate their bodily movements 
into sound for an embodied audio programming experience. 
Sonification Blocks provides a context and a language for 
exposing students to powerful ideas in both programming 
and sound synthesis. 

Acknowledgments 
We thank Richard Davis, Engin Bumbacher, and Chris 
Proctor for their invaluable feedback on early prototypes 
and on the manuscript. We also thank the Lemann Center 
at Stanford for its support. 

References 
[1] Edith Ackermann. 2001. Piaget’s constructivism, Pa­

pert’s constructionism: What’s the difference?. In Con­
structivism: Uses and Perspectives in Education. 

[2] Joel C. Adams and Andrew R. Webster. 2012. What 
do students learn about programming from game, mu­
sic video, and storytelling projects?. In Proceedings of 
the 43rd SIGCSE Technical Symposium. 643–648. 

[3] Paulo Blikstein. 2015.	 Computationally Enhanced 
Toolkits for Children: Historical Review and a Frame­
work for Future Design. Foundations and Trends in 
Human-Computer Interaction 9, 1 (2015), 1–68. 

[4] Sayamindu Dasgupta and Benjamin M. Hill. 2017.
 
Scratch Community Blocks: Supporting Children as
 
Data Scientists. Preprint, arXiv:1702.00112 (2017).
 

[5] Google Developers. 2017. Blockly.	 (8 March 2017). 
Retrieved from https://developers.google.com/blockly/. 

[6] Jason Freeman, Brian Magerko, Tom McKlin, and oth­
ers. 2014. Engaging underrepresented groups in high 
school introductory computing through computational 
remixing with EarSketch. In Proceedings of the 45th 
SIGCSE Technical Symposium. 85–90. 

[7] Mark Guzdial and Elliot Soloway. 2002. Teaching the 
Nintendo generation to program. Commun. ACM 45, 4 
(2002), 17–21. 

[8] Mozilla Developers Network. 2017. Web Audio API. (8 
March 2017). Retrieved from https://developer.mozilla. 
org/en-US/docs/Web/API/Web_Audio_API. 

[9] Benjamin R. Shapiro, Annie Kelly, Matthew Ahrens, 
and Rebecca Fiebrink. 2016. BlockyTalky: A Physical 
and Distributed Computer Music Toolkit for Kids. In 
Proceedings of the 2016 International Conference on 
New Interfaces for Musical Expression (NIME16). 

[10] Margaret Wilson. 2002. Six views of embodied cogni­
tion. Psychonomic bulletin & review 9, 4 (2002). 

Demonstration IDC 2017, June 27–30, 2017, Stanford, CA, USA

736

https://developers.google.com/blockly/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

	Introduction
	Background and Related Work
	Design Overview
	Audio Blocks
	Data Processing Blocks
	Live Feedback
	Scaffolding

	Conclusion
	Acknowledgments
	References



