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ABSTRACT
In this paper, we present ten guiding principles for
designing construction kits for kids, informed by our
experiences over the past two decades:

*  D e s i g n  f o r  Designers
*  L o w  F l o o r  a n d  W i d e  Walls
* Make Powerful Ideas Salient – Not Forced
*  S u p p o r t  M a n y  Pa ths ,  M a n y  Styles
* Make it as Simple as Possible – and Maybe Even
Simpler
*  C h o o s e  B l a c k  B o x e s  Carefully
* A Little Bit of Programming Goes a Long Way
* Give People What They Want – Not What They Ask For
* Invent Things That You Would Want to Use Yourself
* Iterate, Iterate – then Iterate Again

While these principles apply especially to the development
of construction kits, we believe that they could be useful
for everyone who designs new technologies for kids.

Keywords
Design, metadesign, construction kits, education, learning

INTRODUCTION
Over the past 20 years, the two of us have worked together
on the design of a variety of new technologies for kids.
Most of our creations can be viewed as “construction kits”
– that is, systems that engage kids in designing and
creating things, sometimes on the screen, sometimes in the
physical world, sometimes both. Kids around the world
have used our construction kits to create their own
animated stories, simulations, robotic constructions,
interactive sculptures, scientific instruments, and
multimedia presentations.

In designing these construction kits, we have had several
overarching goals: to help kids become more fluent and
expressive with new technologies (and with “old”
technologies too); to help them explore important concepts
(often in the domains of mathematics, science, and
engineering) through their expressive activities; and, most

broadly, to help them become better learners.

In this paper, we make a first attempt to articulate our
“guiding principles” for designing construction kits for
kids. These principles have emerged through our
collaboration, with a large number of colleagues, in the
development of many different construction kits (including
LEGO/Logo [5], Microworlds, StarLogo [6], Scratch [10],
Programmable Bricks [7], and others). When we design
new technologies, we do not explicitly refer to this list of
principles, as if checking off items on an agenda. Rather,
the principles are always sitting in the back of our minds,
subtly (and sometimes not so subtly) informing each
decision we make.

These guiding principles are influenced (some might say
biased) by our focus on construction kits. But we feel that
the principles could be useful for everyone who designs
new technologies for kids – and, perhaps, those who design
for adults too.

1. DESIGN FOR DESIGNERS
Probably the most important unifying thread in all of our
projects is our emphasis on “learning through designing.”
Seymour Papert has served as our most important
intellectual mentor, and we have been deeply influenced by
his Constructionist approach to learning and education [3].
Like Papert, we believe that the best learning experiences,
for most people, come when they are actively engaged in
designing and creating things, especially things that are
meaningful to them or others around them.

If our goal is to engage kids in meaningful design
experiences, then it makes sense for us to design for
designers – that is, to design things that will enable kids to
design things. We see the traditional LEGO construction
kit as a model for what we are trying to achieve with new
technologies. We provide kids with a simple set of parts
(in the spirit of LEGO bricks) that they can use to design
and create a diverse collection of constructions. But our
new construction kits allow new types of creations: while
kids use traditional LEGO bricks primarily for static,
structural creations (such as houses and castles), they use
our new building blocks for dynamic, interactive creations
(such as animations in a virtual world or kinetic sculptures
in the physical world).

The analogy with LEGO kits also suggests an important
counter-example. In recent years, a growing number of
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LEGO kits highlight a specific construction (such as a Star
Wars spaceship or a Harry Potter castle), with many
specialized pieces. Although it is possible to use these kits
to create a variety of constructions, many kids build the
model suggested on the package, or perhaps slight variants,
and nothing more. This type of activity might qualify as
“hands-on learning” or “learning-by-doing,” but it is not
what we mean by “learning-through-designing.” Our goal is
to develop technologies that not only engage kids in
constructing things, but also encourage (and support) them
to explore the ideas underlying their constructions.

2. LOW FLOOR AND WIDE WALLS
The Logo programming language is often described as
having a low floor and high ceiling: it is easy for novices
to get started (low floor) and possible for experts to work
on increasingly sophisticated projects (high ceiling).

In our own work (especially in recent years), we have put
less emphasis on high ceilings and more emphasis on what
might be called “wide walls.” That is, we have tried to
design technologies that support and suggest a wide range
of different explorations. When kids use our Programmable
LEGO Bricks, for instance, they can create anything from a
robotic creature to a “smart” house to an interactive
sculpture to a musical instrument. We want kids to work
on projects that grow out of their own interests and
passions – which means that our technologies need to
support a wide range of different types of projects.

When we evaluate the use of our construction kits, we
consider diversity of outcomes as an indicator of success. If
the creations from a class of students are all similar to one
another, we feel that something has gone wrong. And if,
after finishing one project, a student feels that s/he is
“done” with the construction kit, again we feel as if we
have failed.

We see our construction kits as defining a space to explore,
not a collection of specific activities. And our hope is that
kids will continually surprise themselves (and surprise us
too) as they explore the space of possibilities. When we
created Programmable Bricks, we didn’t imagine that kids
would use them to measure their speed on rollerblades, or
to create a machine for polishing and buffing their
fingernails.

To support and encourage this diversity, we explicitly
include elements and features that can be used in many
different ways. The design challenge is to develop features
that are specific enough so that kids can quickly understand
how to use them (low floor), but general enough so that
kids can continue to find new ways to use them (wide
walls).

3. MAKE POWERFUL IDEAS SALIENT – NOT
FORCED
In a paper [4] written 20 years after the publication of his
landmark book Mindstorms: Children, Computers, and
Powerful Ideas [2], Papert noted that educators had reacted
to the book “as if it were about children and computers, as
if the third term [powerful ideas] was there as a sound
bite.” In fact, Papert had intended the idea of “powerful
ideas” to be at the core of his book – and his work.

What is a powerful idea? In Mindstorms, Papert describes
powerful ideas as ideas that “can be used as tools to think
with over a lifetime.” He points to the idea of “feedback” as
an example: you can use it to understand many different
types of phenomena in the world, not only in engineering,
but also in biology and social sciences. Powerful ideas are
ideas with leverage: they help you make sense of the world.

In designing construction kits, one of our primary goals is
to help kids explore and understand powerful ideas. We
have found that trying to teach powerful ideas directly is
not very effective. Rather, our strategy is to provide
opportunities for kids to encounter and use powerful ideas
as a natural part of design experiences.

In developing StarLogo modeling software, for example,
we designed the objects and commands so that kids
naturally encounter the idea of “emergence” in the process
of creating models. If they write rules for cars on a
highway, they naturally observe how traffic jams emerge
from the interactions among the cars. If they write rules for
birds flying in the sky, they naturally observe how flocks
emerge from interactions among the birds.

We view StarLogo as a “microworld” for exploring the idea
of emergence. Similarly, the original Logo turtle served as
a microworld for exploring ideas of differential geometry,
and Programmable Bricks serve as a microworld for
exploring the idea of feedback. Creating new microworlds
is not easy. In a successful microworld, different kids
engage in different design activities (e.g., one creates a bird
flock, another a traffic jam), but all encounter and use the
same underlying ideas as a natural and integral part of the
design process. That’s very different from traditional
educational applications, in which all kids typically work
on the same activity (e.g., solving a specific puzzle) to
learn a particular idea.

4. SUPPORT MANY PATHS, MANY STYLES
When we were testing an early version of our LEGO/Logo
technology, we worked with a fourth-grade class in which
the students wanted to build an amusement park. One
group of students decided to create a merry-go-round. They
carefully drew up plans, built the mechanisms, then wrote a
program to make the ride spin round-and-round whenever
someone pressed a touch sensor. Within a couple hours,
their merry-go-round was working.

Another group of students decided to build a Ferris wheel.
But before the ride was working, they put it aside and
started building a refreshment stand next to the Ferris
wheel. We were concerned: the refreshment stand did not
have any motor or sensors or programming. We worried
that the students would miss out on some of the powerful
ideas underlying the LEGO/Logo activity. But we didn’t
interfere. After finishing the refreshment stand, the group
built a wall around the amusement park, created a parking
lot, and added lots of little LEGO people walking into the
park. Then, finally, they went back and finished their Ferris
wheel.

These two groups represent two very different styles of
playing, designing, and thinking. Sherry Turkle [13, 14]
has described these styles as “hard” (the first group) and
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“soft” (the second). In another classification [12], the two
styles are described as “patterners” and “dramatists.”

In designing new technologies, we put a high priority on
supporting users with all different styles – hards as well as
softs, patterners as well as dramatists. We pay special
attention to make sure that our technologies are accessible
and appealing to the softs (and dramatists), since we feel
that math and science activities have traditionally been
biased in favor of the hards (and patterners), and we want to
work affirmatively to close the gap.

5. MAKE IT AS SIMPLE AS POSSIBLE – AND
MAYBE EVEN SIMPLER
In some ways, this guideline seems obvious. Who wants
needless complication? But there is no doubt that
technology-based products have become more and more
complex. One reason is “creeping featurism”: advances in
technology make it possible to add new features, so each
new generation of products has more and more features.

We yearn for a return to the clean simplicity of the
Macintosh of the 1980s. We see a role for complexity: we
make use of ever-more complex technologies, and we want
to help users accomplish complex tasks. But we want the
user experience to be simple. We try to develop systems
that offer the simplest ways to do the most complex
things.

We have found that reducing the number of features often
improves the user experience. What initially seems like a
constraint or limitation can, in fact, foster new forms of
creativity.

In the mid-1990s, for example, we had developed a
Programmable Brick that was roughly the size of a child’s
juice box. It could control four motors and receive inputs
from six sensors. For a sponsor event at the Media Lab, we
wanted to create some interactive decorations for the tables.
We didn’t need all of the capabilities of the Programmable
Brick, so we quickly developed a smaller, scaled-down
version, roughly the size of a matchbox car. It could
control only two motors with inputs from only two
sensors. We expected it to be a short-lived project; we
“knew” that most users would want more motors and more
sensors. But once we had developed the scaled-down
version, which we called a Cricket, people kept finding
more and more creative applications for it, in spite of (or
perhaps because of?) its apparent limitations [9]. Over time,
we shifted our research effort, making the Cricket the
centerpiece of our new construction kits. Even though the
original Programmable Brick was better suited for certain
projects, the simplicity of the Cricket won out.

6. CHOOSE BLACK BOXES CAREFULLY
In designing a construction kit, one of the most important
decisions is the choice of the basic building blocks of the
kit. This choice determines, to a large extent, what ideas
users can explore with the kit – and what ideas remain
hidden from view.

When kids build robotic devices with our Programmable
Bricks, for instance, they learn about mechanisms and
gearing, and they learn about feedback and control. But

they generally don’t learn about the inner workings of
motors. The motor remains a black box. If you wanted to
help kids learn how motors work, you should design a
construction kit with lower-level building blocks, so that
kids could build their own motors.

Similarly, the choice of the basic “building blocks” in a
programming language determines what kids are likely
learn as they use the language. When kids put together
Logo commands like forward and right into instructions
like repeat 4 [forward 50 right 90] (to make a square) or
repeat 360 [forward 1 right 1] (to make a circle), they
gain a better understanding of many important
mathematical and geometric concepts. But the primitive
command forward is still a black box. Each time the turtle
moves, the computer must calculate new x and y positions
from the original x and y positions using trigonometric
calculations. These calculations are hidden from the user. If
the goal of the construction kit were to help kids learn
these types of trigonometric calculations, then the turtle
would be a bad black box. But by hiding these calculations
inside a black box, the turtle frees the user to experiment
and explore other mathematical and geometric ideas.

We faced a similar choice when we were developing the
programming language for our Cricket programmable brick.
We needed a new command for controlling the color of the
LEDs that plug into the Cricket. At a low-level, the
Cricket needs to provide the LED with three inputs for the
red, green, and blue components of the color. So, at first,
we provided users with a setcolor command with three
numeric inputs, to give them direct control over the color.
But kids found it difficult to use this command for the
types of activities that they wanted to do. For example,
they wanted the color of LED to change based on the
current reading from a temperature sensor. If the
temperature sensor reported a low value, they wanted the
LED to turn blue; as the temperature increased, they wanted
the color of the LED to move through the spectrum,
turning red at high temperatures. It is very difficult to
program this behavior using a three-input setcolor
command. So we created a simpler setcolor command with
just a single input that ranges from 0 to 100 (the same
range as the readings from the temperature sensor). Kids
could use this new command to program the desired
behavior with the simple instruction forever [setcolor
temperature].

In short, we found that the best way to deal with three
dimensions was to throw away two of them. (Make it as
simple as possible – and then even simpler!) If our primary
goal were to help kids learn about red-green-blue
composition of light, the single-input setcolor command
would be a bad choice. But we have found that the single-
input setcolor  encourages and supports much great
exploration of color effects than the three-input version.

7. A LITTLE BIT OF PROGRAMMING GOES A
LONG WAY
Programming languages are the construction kits of the
computational world. When kids learn to program, it
extends the range of what they can design, create, and
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invent with the computer. Moreover, it provides them with
experience in using and manipulating formal systems –
experience that is important not only in computer science
but also in many other domains (from mathematics to
grammar to law).

But the history of introducing computer programming to
kids is a mixed success. When personal computers first
moved into schools in the early 1980s, programming (often
with Logo or Basic) was one of the primary activities –
and, indeed, one of the main rationales for buying the
computers in the first place. Over the past 20 years,
however, the role of programming has steadily diminished
in educational uses of computers, even as computers have
proliferated in schools. Many people now view computer
programming as a narrow, technical activity, too difficult
for the masses, appropriate only for the small segment of
the population who choose it as a career path.

We continue to believe in the value of everyone learning to
program, but we are also well aware of the difficulties of
learning to program. Many beginning programmers hit a
plateau, able to write simple programs, but unable to go
further. We have found that it is difficult to help kids get
beyond this plateau. But, over the years, we have begun to
realize that being “stuck” on the plateau is not such a big
problem: kids can learn a great deal, and benefit a great
deal, while they are on the plateau. We have shifted our
efforts, trying to leverage what kids can do well, rather than
focusing on what they can’t. Kids generally have little
difficulty learning to use imperative (action-oriented)
commands (like forward and on), simple control structures
(like repeat), basic conditionals, and simple procedural
abstraction. So we have been developing programming
languages and contexts that enable kids to do a lot with
those basic elements.

We attribute the success of our Programmable Bricks to the
fact that kids can accomplish a lot with a little. Kids can
engage in interesting design projects (and important
learning experiences) with very simple programs,
controlling lights and motors, triggered by inputs from
sensors. Our new Scratch programming language has
similar qualities, enabling kids to manipulate rich media
(sounds, music, animations) with simple combinations of
commands.

8. GIVE PEOPLE WHAT THEY WANT – NOT
WHAT THEY ASK FOR
All good designers want to understand their users, in order
to design products well-matched to the needs and interests
of their users. Many design teams invest considerable time
interviewing users or talking with focus groups, asking
users for feedback and suggestions on features and
capabilities. But is asking questions directly to users really
the best way to understand what they want?

We don’t think so. We have found that user suggestions are
usually not very helpful. In some cases, users ask for
impractical or infeasible features. When we were designing
the first Programmable Bricks, for instance, elementary-
school students recommended that we design the Bricks so
that they could fly. In other cases, users ask for only

incremental changes, not aware of the possibilities of
radical change. With early versions of Logo software in the
1980s, users often suggested new ways for the turtle to
draw – but they never suggested the addition of paint tools.

Another problem is that users often ask for more flexibility
than is really needed or desirable. When we showed an
early version of our Scratch software to potential users,
they suggested that all of the window panes in the interface
should be movable and resizable. We implemented a new
version with that type of flexibility, but users weren’t
happy with that either. What we needed to do, it turns out,
was to fine-tune the parameters (i.e., adjust the sizes of the
panes), not provide full flexibility. Often, designs with
well-chosen parameters are more successful than designs
with fully-adjustable parameters. We are all in favor of
giving control to users – but only where control will really
make a difference in their experiences.

Rather than asking users what they want, we have found it
more productive to observe users interacting with our
prototypes, and try to infer what they want (and don’t
want) from their actions. Often, their actions speak louder
than their words. It is usually easy to see when users get
frustrated, even if they don’t articulate their frustration.
When we observe users repeatedly making the same
“mistake” with a prototype, we sometimes are able to
revise the software so that it behaves in the way that users
had expected. In early versions of our LogoBlocks
graphical programming language, for example, users often
tried to get rid of blocks by dragging them from the
workspace back onto the palette. Initially, we did not want
to allow this method for deleting blocks, since we worried
that users would too often delete blocks by mistake. But
after seeing users attempt this action repeatedly, we
changed the software so that it behaved as users expected
and wanted.

9. INVENT THINGS THAT YOU WOULD WANT T O
USE YOURSELF
At first blush, this guideline might seem incredibly
egocentric. And, indeed, there is a danger of over-
generalizing from your own personal tastes and interests.
But we have found that we do a much better job as
designers when we really enjoy using the systems that we
are building. And we have found that it is, in fact, possible
to design systems that are interesting and enjoyable for
both kids and ourselves.

We feel that this approach is, ultimately, more respectful to
kids. Why should we impose on kids systems that we
don’t enjoy using ourselves? For example, we are generally
skeptical of educational software that, in an effort to
encourage kids to reflect on their actions, requires that kids
annotate each action that they take. We wouldn’t want to
do that with the software that we use, so why should we
require it of kids?

There is an additional, perhaps less obvious, reason why
we try to invent things that we enjoy using ourselves. The
technologies that we develop can not succeed on their own.
As kids use our technologies, they require support from
teachers, parents, and mentors. We aim to build not only
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new technologies, but also communities of people who can
help kids learn with those new technologies. And we have
found that it is easiest to build those communities if
everyone involved (adults as well as kids) enjoy using the
technologies. In New York, for example, groups of MIT
alumni have been volunteering their time to help kids at
Computer Clubhouses [8] learn to use our Programmable
Bricks. The MIT alumni are motivated, in part, by a desire
to help youth in low-income communities. But there is no
doubt that they are also motivated by their own desire to
build robots.

10. ITERATE, ITERATE – THEN ITERATE AGAIN
In designing our construction kits, we put a high priority
on “tinkerability” – we want to encourage kids to mess
with the materials, to try out multiple alternatives, to shift
directions in the middle of the process, to take things apart
and create new versions. Kids learn new lessons with each
iteration.

Just as we want kids to iterate their designs, we apply the
same principle to ourselves. In developing new
technologies, we have found that we never get things quite
right on the first try. We are constantly critiquing,
adjusting, modifying, revising. The ability to develop
rapid prototypes is critically important in this process. We
find that storyboards are not enough; we want functioning
prototypes. Initial prototypes don’t need to work perfectly,
just well enough for us (and our users) to play with, to
experiment with, to talk about.

In his book Serious Play[11], Michael Schrage argues that
prototypes are especially helpful as conversation starters, to
catalyze discussions among designers and potential users.
We agree. We find that our best conversations (and our best
ideas) happen when we start to play with new prototypes –
and observe users playing with the prototypes. Almost as
soon as we start to play with (and talk about) one
prototype, we start to think about building the next.

This process requires both the right tools (to support rapid
development of new prototypes) and the right mindset (to
be willing to throw out a prototype soon after creating it).
Too often, the software-development community seems to
follow a paradigm of: plan ahead, design carefully, then
implement once. We much prefer the paradigm proposed by
our colleague John Maeda [1]: imagine, realize, critique,
reflect, iterate.

Of course, design principles should be subject to this same
process. The ten principles discussed in this paper have
already gone through multiple iterations – and we expect
that we will continue to iterate them in the future.
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