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Abstract 
The goals of instruction are usually taken to be fixed, at least in their broad outline. For 
example, in elementary school mathematics, students progress from counting, to addition, 
multiplication, and fractions. Given this state of affairs, the business of educational research 
has been to determine how the fixed instructional aims can best be reached. Education 
researchers have traditionally asked questions such as: What are the typical difficulties that 
students experience? Which means of instruction – method A or method B – is better for 
achieving our instructional aims?  
In contrast, we will describe a line of work in which we have shifted the focus from the means 
to the object of learning. We are concerned with how the structure and properties of knowledge 
affect its learnability and the power that it affords to individuals and groups. We briefly review 
three agent-based restructurations of traditional science content and discuss the 
consequences for scientific power and learnability.  
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Introduction 
The advent of powerful computation has brought about dramatic change in many areas of life 
including dramatic changes in the practice and content of science. But, to a great extent, 
these dramatic changes have not resulted in significant change in the world of education. 
The authors of this paper have worked for many years in a more or less loosely coupled 
interaction on projects directed at bringing the benefits of these changes to students. This 
paper develops a conceptualization of this enterprise in historical and epistemological terms 
that go beyond computers and suggest broad new directions for the sciences of learning.  

As a first step to presenting this conceptualization, we look back historically at changes in 
science that had significant benefits for both scientists and learners. The example that we 
have found most useful in presenting our idea is the shift from Roman to Hindu-Arabic 
numerals in arithmetic.  This was not done with an “educational intent.” But it had profound 
consequences for education. The new direction suggested in the paper is to study more 
systematically changes of this kind, to examine the practices of science in search of cases 
that could but have not had similar educational consequences and to consider the possibility 
of deliberately making such changes in thinking about scientific (and, indeed, other) topics 
with an educational intent. The conceptualization of our own projects developed in the paper 
presents it as exemplifying this direction of work.  

We begin by looking more closely at the Roman to Hindu-Arabic transition through the lens 
of a thought experiment: 

A thought experiment  
Imagine a country, FOO, where people represented numbers as the Romans did, using 
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symbols such as MCMXLVIII. Learning Science researchers in this imaginary country were 
very concerned with the difficulty of learning to handle numbers, and they worked hard to 
make these skills accessible to more of their citizens. They engaged in a number of different 
approaches. Some researchers collected the misconceptions and typical mistakes made by 
children. For example, they might have discovered that some children believed that since CX 
is ten more than one hundred, then CIX must be ten more than CI. Others constructed and 
studied computer programs that allowed students to practice numerical operations. Still 
others constructed specially developed manipulatives --wooden blocks marked with the 
symbols C, X, V, and I— to help students learn.  Yet another group tried to elucidate the 
problem by framing it in evolutionary terms, speculating that perhaps humans were just not 
wired to do multiplication and division. It is not hard to imagine, in our thought experiment, 
that many of these approaches brought about substantial improvement in learning. But let us 
now imagine that, at some point, Hindu-Arabic numerals were invented by the educators of 
this country. This invention then opened up a new way to handle and think about numbers. 
Resulting gains in educability towards a functional numeracy would likely far outstrip any of 
the benefits that would have accrued from any of the improved techniques for teaching with 
the Roman numeral system. Before: the learning gap in arithmetic was immense: only a 
small number of trained people could do multiplication. After:  multiplication became part of 
what we can expect everyone to learn.  

This parable is not intended to show that the other approaches were wrong. They added 
knowledge that would likely have useful applications even after the shift in representations. 
But the point is that the most dramatic improvements did not come from what we usually 
think of as the main part of the science of learning.   

In point of fact, Hindu-Arabic numerals were not invented with an educational intent. But they 
could have been, and that allows us to show the need for a new branch of the learning 
sciences with the mission of understanding, facilitating and even designing shifts similar to 
the shift from Roman to Hindu-Arabic numerals.  

A first step is to name the sort of innovation associated with the shift from Roman to Hindu-
Arabic representations of number. This sort of transformation has no name in the standard 
educational discourse. It is not sufficient, for example, to say that we have a new 
“curriculum,” or a new “instructional approach.” Even in this simple case, the algorithms that 
are taught, students’ mental representation, their sense of systematicity in the field, 
psychologically important landmark values, and even social embedding (“who can do what,” 
e.g., scribes for the emperor vs. modern carpenters or business people) changes.  In our 
terminology, we will say that we have a new structuration of a discipline. The main thrust of 
this paper is to flesh out this term through concrete examples. But, for now, we introduce a 
preliminary formal definition: By structuration we mean: the encoding of the knowledge in a 
domain as a function of the representational infrastructure used to express the knowledge. A 
change from one structuration of a domain to another resulting from such a change in 
representational infrastructure we call a restructuration.  

Our Roman-to-Arabic example is just one of many examples we could have chosen. diSessa 
in his book Changing Minds (2000) describes the historical restructuration of simple 
kinematics from a text-based to an algebraic representation. He illustrates the restructuration 
though a story of the 16th century scientist Galileo. He describes Galileo struggling to handle 
a problem involving the relationship between distance, time and velocity without being able to 
appeal to algebraic notations such as d=vt.  The central new idea in his book is exemplified 
by this representation of algebra as an epistemological entity capable of transforming what 
was a complex and difficult idea for as powerful an intellect as Galileo’s into a form that is 
within the intellectual grasp of every competent high school student. The vista opened to the 
imagination is dramatic: if the problems with which we struggle today could be so 
transformed, think of the new domains we could enter and conquer!  Or as educators we 
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might take the prospect in a different slant: if algebra could make accessible to students what 
was hard for Galileo, our holy grail should be whatever can similarly transform what is hard 
for them today. This is the quest on which we and diSessa are embarked.  A subtext that is 
left implicit in his description, perhaps out of politeness to his colleagues, is the relative 
puniness of what mainstream educators would have brought to bear on helping students 
understand Galileo’s thinking: design a curriculum, introduce manipulables, create a learning 
community, embed it in a computer game.  Surely bringing all the machinery of How People 
Learn1 to bear on teaching Galileo’s students would have resulted in improved understanding 
of kinematics, but inventing algebra did better by a long, long shot.  

You can imagine the reply of our FOOian learning scientists if somebody proposed to 
develop Hindu-Arabic numerals to solve the social problem of the low proportion of the 
population that could pass the multiplication tests. The funders of the Fooian Learning 
Science Foundation and the chairpeople of the Learning Science departments said: “That’s 
not learning science”. Some might say: “It’s not learning science, it’s mathematics”. Others 
would say: “It is not science research, it is design.” From our perspective, they are caught in 
a dilemma: either they expand their conception of the learning sciences discipline to include 
such restructurations or they exclude a dramatic improvement in learning from the province 
of learning sciences and give it up to, for example, the mathematics department. The 
mathematics department of FOO might recognize this restructuration as research, but their 
criteria for whether this is important research is whether it addresses the set of problems 
currently regarded as important by professional mathematicians and not whether it 
addresses problems in education. This dilemma is not just confined to our imaginary country 
of FOO. In the contemporary world the science of structurations has no natural home. {It 
requires deep disciplinary knowledge, creativity in the design of representations and 
sensitivity to the epistemological and learning issues.} The structure of academic 
departments, funding organizations, etc. does not have a place for such work. We would like 
to see the fact that a few researchers including ourselves have found places in the University 
and funding system as a manifestation of the trend we noted at the beginning of the paper 
and believe that it would be accelerated by the development of the new branch of Learning 
Sciences. 

It is the argument of this paper that computation-based restructurations are poised to make a 
significant impact on knowledge domains. The Learning Sciences is thus presented with an 
opportunity to study the process of restructuration and to direct it for the benefit of learners. 

Ways to evaluate restructurations 
From our current perspective, it is obvious that the Hindu-Arabic restructuration leads to 
better results in being able to handle numerical relationships than the Roman structuration. 
However, to the people of Foo and to Foo’s evaluators and test-makers, it was not obvious. 
In our thought experiment, students who learned the new Hindu-Arabic system would likely 
not be able to pass the standardized tests developed using the old Roman system. Suppose 
they were asked: Which is the largest, CIX, XCI, or CXI? A student of the Hindu-Arabic 
system might not even understand this question, yet still be much better prepared to deal 
with real-world arithmetical problems. The same set of difficulties may be anticipated today. 
To overcome this difficulty the Learning Sciences must strive to create evaluation measures 
that go beyond the specifics of a representation which is a means to an end and instead 
devise measures for the ends themselves. 

                                                
1 The most widely used text on improving education by changing how children learn in a 
child-centered way without changing what they learn.  
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In order to study and evaluate restructurations, we have found it useful to focus on five core 
properties of structurations: 

a) Power properties.  By definition a restructuration of a domain must be able to do what 
could be done before and as in the cases we describe here preferably more as well.  A new 
structuration can, in some respects, have the effect of broadening a discipline, in some 
cases by bringing what were regarded as essentially different phenomena into a common 
framework, and in other cases, by encompassing phenomena that could not be treated at all. 
An example of the former kind will be seen in our use of a formalism for multi-agent models 
to treat phenomena in physics and in biology. An example of the other kind is chaotic 
dynamics, which is famously intractable with algebra and calculus, yet is readily amenable to 
simulation and study with computers.  

b).  Cognitive properties.  We are interested in restructurations that are more easily learned 
while preserving or augmenting the power of the old. Among factors that make for learnability 
some are traditionally classified as cognitive. For example, the sheer “complexity” of the 
tasks to be performed surely affects ease of learning.  A subtler dimension is the fit of 
knowledge to be learned with pre-existing knowledge (whether it is learned or innate) as for 
example in diSessa’s theory of p-prims (1983) or in Chomsky’s theory of linguistics (1957).   

c) Affective properties.    A restructuration can make the knowledge more or less engaging, 
holding or simply likeable. Computational media offer especially rich opportunities to make 
use of this fact to increase engagement of the learner (Turkle, 1984). 

d) Social properties.  Richard Dawkins (1976) has used the concept of “meme” in analogy 
with gene to describe how ideas can spread in an evolutionary manner through a society, 
social niche or culture. Restructurations generate memes that can have varying evolutionary 
fitness in the social landscape. Ecology is an example of a meme that has spread quite 
rapidly from science into the general culture. The presence of ecology as a common meme 
enables some of the restructurations we present below to more easily spread thru the 
culture. This is an example of interactions between properties of structurations. The 
presence of the ecology meme is affected by and affects the affective response of individuals 
and creates knowledge elements which are good cognitive fits with systems-based 
restructurations. 

e) Diversity properties. One way in which structurations of a discipline can differ is in their 
match with a diversity of learning styles and ways of thinking. How does the learnability of 
the new structuration differ for learners with different backgrounds and learning styles? How 
does a learner’s or a teacher’s culture, ethnicity, gender, cognitive or emotional style affect 
their interaction with the properties of a structuration? Howard Gardner (1993) has shown 
how learning is served by an appropriate match between the learner’s kind of “intelligence” 
and the material being learned. However the situation in schools where matching means 
choosing among given domains strongly limit the power of this idea. The prospect of 
restructuring domains offers dramatically greater scope: instead of characterizing people in 
terms of their match with subject domains (mathematical, musical. Literary, etc) we look for 
restructuration of domains to match people’s styles.   

We now turn to giving concrete example of restructurations. We have chosen as domains 
core representative topics in the areas of mathematics, science and engineering. All of the 
examples we will give make use of computational objects as their representational 
infrastructure. In these examples, the computational object replaces a more traditional 
mathematical representation such as geometric, algebraic or calculus-based. As we will see 
in the examples, the computational object (aka agent) has power properties that make it 
attractive to scientists and has cognitive, affective, and social and diversity properties that 
make what we currently think of as advanced topics learnable by a much wider and younger 
population. Just as the advent of Hindu-Arabic numerals enabled a democratization of 
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numerical facility so we suggest will computational agents enable a democratization of STEM 
knowledge, particularly so for understanding the evolution of systems over time. 

Our examples are framed by a large story with two plot lines. One is about the development of 
science through three major restructuring phases; the other is about how these 
restructurations enter (or fail to enter) the learning lives of children. 

We introduce the scientific restructurings by looking at a number of ways to think about a 
circle.  

For Euclid a circle is defined by the fact that all its points are at the same distance from a 
certain point called its center. An aspect of this that is to be kept in mind is that the decision 
about whether a point is on the circle requires access to a point that is not on the circle: an ant 
crawling on a path could not use this definition to decide whether the path is circular. 

The second view of the circle is its definition by an equation such as x2 + y 2 = K.  This was 
made possible by a major restructuration of geometry, due to Descartes, by representing 
geometric entities in algebraic form.  

The third view will be presented anachronistically in terms of a computational object known as 
“the turtle” or “the Logo turtle.” Think of this as an entity that has two essential “state 
properties.” In Euclid’s geometry the fundamental element is a point defined by the fact that it 
has position and no other properties. As a mathematical entity it has no color, size or shape 
although the geometer may represent it as a small, black dot.  The turtle is much like the point 
except that its has position and ONE other property, called its heading. Again on a computer 
screen it is represented as something with shape, color and size but these are not properties 
of the pure mathematical turtle. A turtle in motion has two velocities: its linear velocity is the 
rate of change of its position; its angular velocity is the rate of change of its heading.  

With these preliminaries we can state our third view of the circle. If a turtle moves with both 
velocities constant it will draw a circle! What is remarkable about this is that the turtle draws 
the circle without reference to any external entity such as Euclid’s “center” or Descartes 
“coordinate axes.”  Another way of saying this is that with this definition an ant walking on the 
circle can know that it is a circle. Yet another is that someone with a tiny field of view can tell 
whether a figure is a circle by looking at all parts of it confined at each instant to the tiny field of 
view – and this is true no matter how tiny the field.  We recall that using Euclid’s definition the 
observer’s field of view would have to be big enough to include the center as well as points of 
the circumference. 

We used a computational object to define a way of thinking about the circle for the reason that 
underlies the second plot line of our story: the turtle enables us to explain the concept in a 
simpler and more concrete way than the one used by the pioneer of this way of thinking two 
centuries before the computer was invented. The pioneer was Isaac Newton and the concept 
is the core of what is now known as “calculus” although most contemporary students who are 
required to undergo school courses with this name would probably not recognize any 
connection. Newton’s great achievement was to deduce a global property (such as being a 
circle or an ellipse) from local properties (such as having constant curvature or the force of 
gravity at each point.) This achievement gave rise rapidly to a restructuring of large areas of 
science. But – and one might say that this is the main theme of this paper – this restructuration 
could be appreciated and used only by people who had already acquired a rather complex 
body of prerequisite skills and knowledge, until the computer enables us to restructurate the 
restructuration and so make it accessible to many more people including, particularly, children 
considered too young to “learn calculus” in its pre-computational form.  

This last assertion will be elaborated shortly, but first we introduce our fourth way of thinking 
about a circle. Place a large number of turtles at the same place. Give each one a random 
heading. Make them all move forward (i.e. in the direction of their headings) by the same 
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amount. They will form a circle. In some ways this goes back to Euclid’s definition: but it has a 
new slant: the circle emerged from the behaviors of a large number of agents.  What will 
emerge in this case is “obvious.” But we shall see how the interaction of large numbers of 
agents each following a very simple rule can give rise to complex, scientifically interesting and 
by no means obvious emergent effects. 

The view of the circle as an emergent property of a large number of agents captures in a very 
simple form the second plot line of our story of scientific restructurings. Newton’s breakthrough 
led to the understanding (“Newtonian mechanics”) of the behavior of individual physical objects 
such as the earth or moon in orbit. It did not take long before scientists tried to apply 
mechanics to large populations of entities, especially the molecules of a gas. But it was not 
until the nineteenth century that the necessary mathematical methods were developed to 
create the systematic theory now known as statistical mechanics which led to a deep 
restructuring of the understanding first of gas laws and later of liquids and solids as the 
aggregate behavior of large numbers of molecules. Here again representing these situations 
as collections of computational objects (agents ...we must decide on language) allows us to 
make accessible to young students a level of understanding that in the past has been very 
difficult even for much older students. 

We now turn from this outline to the actual chapters of our story. The first example is about 
individual (or small groups) of entities matching the original Newton restructuration, the next is 
about gas laws and the last shows the beginnings of an extension of the ideas to 
understanding solids. 

Turtle Geometry and Beyond 
We show in this section how the introduction of the turtle opens the possibility of far-reaching 
restructuring of early mathematics education. But first we want to counter in advance justified 
skepticism about the idea that we have an overly grandiose obsession with our turtle as a 
“silver bullet” or “panacea.” Our response has two opposite parts. On one side we point out 
that what is at play here is not an idea that we invented: what we are doing is showing that the 
computer can make available to children the essence of one of the most important ideas of all 
time made by one of the scientific geniuses of all time. This goal is surely worthy of a few 
lifetimes of obsession. We are not being overly grandiose in expecting this idea that has 
deeply transformed science could have deep consequences for learning as well.  On the other 
side although we believe that many very different innovations will come as more people join 
the search for restructuration, we also believe that the best way to serve this goal is not to 
spread ourselves thin by trying to go in too many different directions but rather to bring out the 
depth and variety of the one we have opened. 

Example 1: The Tick model - Newtonian Physics and Beyond 
In chapter two of Changing Minds (2000), diSessa describes the “tick model” of motion. It is a 
computational model of motion whereby an imaginary clock repeatedly ticks at a fixed interval 
and an object moves in the interval between ticks. The tick model is fundamental to a 
computational restructuration of kinematics. diSessa argues that the tick model is marvellously 
adapted to representing kinematics content. It is both very expressive as well as precise. It 
reveals the essential components of motion: it’s repetitiveness and it’s differential components 
accumulating over time. Indeed the tick model has become essential not only for describing 
motion but also for describing any system that changes over time. 
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Our first example uses a single turtle agent or a small number of agents to restructurate 
traditional kinematics. In the next two examples, we will employ large numbers of agents and the 
methodology of agent-based modelling. We will claim that computational agents form a new 
computational infrastructure that is already restructurating scientific disciplines and that careful 
thought is needed in order to both understand the impact of these restructurations on learning of 
the knowledge domains and to design restructurated curriculum that takes advantage of the 
properties of the restructuration. We take a brief digression to introduce agent-based modelling. 

 

Agent-based Modeling 
One powerful methodology that has emerged from complex systems theory is agent-based 
modeling.  In contrast to more traditional mathematical modeling which is typically done with 
equations, agent-based modeling makes use of simple computational rules as the 
fundamental modeling elements. The equational modeling game is to observe a 
phenomenon and try to fashion an equation that fits the observed data. A classic example is 
the Lotka-Volterra equations used to model the change in predator and prey population 
levels over time. In equational modeling, the core elements of the model are variables that 
refer to population-level descriptors. In the Lotka-Volterra equations, the core elements are 
L, the population level of the lynx predators, H, the population level of the hare prey, and K, 
the interaction constant that describes the average predation. To understand the state of the 
system at a future time T, you solve the equations for that time. In contrast, in the agent-
based modeling game, the core elements are computational objects or “agents” that 
represent individual lynxes or hares. Each of these agents has state variables that describe 
its particular state, such as age, energy level, hunger, etc. The behavior of the agents is 
determined by the computational rules that tell each agent what to do at each “tick” of a 
clock. The rules are framed from the agent’s point of view. For example, if the agent is a 
lynx, the rules might say: move a step in the direction you are headed, reduce your energy 
variable by a fixed amount, look for prey in the vicinity, if found where you are, try to eat it, if 
not turn to face closest prey you can see… To determine the state of the system at future 
time T, you run the system for T clock ticks. As rules typically have stochastic components, 
one would typically run the system many times to capture the space of possible trajectories 
for the system.  

 Increasingly scientists are making use of agent-based models as both explanatory and 
predictive tools. Across a wide variety of domains in the natural and social sciences, 
scientists are framing their theories in terms of agent-based models. In the natural sciences, 
agent-based models have several advantages over equational approaches. Chief among 
these are a) the epistemological match – rules for individual predators or molecules are 
closer to our intuitive notions of these “objects” as distinct individuals rather than as 
aggregate populations. b) the greater adjustability – equational representations tend to be 
brittle, that is, for some small change in environmental conditions, the algebraic forms 
themselves do not typically change only a little. An entire new formalism may be required to 
capture the new situation. In our lynx-hare example, if we discover that when hares become 
too populated, they start to attack each other, the changed needed to the LK equations is not 
straightforward. In contrast, in the agent-based approach, it is a trivial matter to give the 
hares an extra rule to that effect. c) Visualization – related to the epistemological match is 
the greater realism afforded by visualization of individual lynx and hare and their dynamic 
behaviors rather than just dynamic graphs of their populations. 
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 All three of these advantages are magnified in the educational context. Students can 
reason about and visualize individual animals in an ecology far better than they can 
population levels. They can draw on their own body and sensory experience to assess 
and/or design sensible rules for the behavior of individuals. They can therefore make much 
greater sense and meaning from the agent-based representations. Furthermore, the 
extensibility/adjustability of the models enables students to engage in real inquiry by asking 
what-if questions of the models and adjusting rules in order to get answers to their questions. 
While this is common practice for scientists, it is not so for students. The alternate 
representation, in effect, enabling them to think more like scientists (Wilensky & Reisman, 
2006).  

In the educational context, there is one more advantage that is greatest of all: the 
greater ease of mastering the representations themselves. Learning to master the LK 
equations requires the prior mastering of an extensive algebraic and calculus-based 
infrastructure that is out of reach for large numbers of our students. These students are 
therefore shut out of the scientific exploration of most worldly phenomena that change over 
time.  And even those students who do eventually master algebra and calculus do so late in 
their student “careers”. Agent-based representations, in contrast, require significantly less 
effort to master. Research we have conducted shows that typical middle school students can 
profitably employ these representations with only a small amount of prior instruction. 
Widespread adoption of agent-based representations can therefore lead to tremendous 
democratization of scientific knowledge. 

Our next two examples employ agent-based modelling to restructurate relatively advanced 
science content making it more learnable as well as accessible to young learners 

Example 2: GasLab - Statistical Mechanics and beyond 
The GasLab package is a suite of NetLogo models of kinetic molecular theory. In the basic 
model, gas molecules are represented by turtle agents that bounce off each other and off 
their enclosing container like billiard balls with elastic collisions. Using GasLab, many groups 
of students have conducted experiments with the Gas-in-a-Box models. They also revised 
and extended the model, creating the nucleus of the set of models, which comprise GasLab. 
The set of extensions of the original Gas-in-a-Box model is impressive in its scope and depth 
of conceptual analysis. Among the many extensions students tried were: heating and cooling 
the gas, introducing gravity into the model (and a very tall box) and observing atmospheric 
pressure and density, modeling the diffusion of two gases, allowing the top to be porous and 
seeing evaporation, relaxing elasticity constraints and looking for phase transitions, 
introducing vibrations into the container and measuring sound density waves, and allowing 
heat to escape from the box into the surrounding container. They also reinvented various 
well-known thought experiments of statistical mechanics related to Maxwell’s demon and 
second law considerations2. Over the course of several weeks, these high school students 
“covered” much of the territory of collegiate statistical mechanics and thermal physics and 
their understanding of it was deeply grounded in both a) their intuitive understandings gained 
from their concrete experience with the models and b) the relations amongst the fundamental 
concepts. 

                                                
2 As one example of these reinvented thought experiments, they constructed a model of 
a divided box with a small opening in the divider in which a propeller is embedded. They 
measured the work done on the propeller by the particles hitting it and the propeller’s 
consequent motion. A version of their model is downloadable from 
http://ccl.northwestern.edu/netlogo/models/GasLabSecondLaw. 
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 GasLab provides learners with a set of tools for exploring the behavior of an ensemble of 
micro- elements. Through running, extending and creating GasLab models, learners were able 
to develop strong intuitions about the behavior of the gas at the macro level (as an ensemble 
gas entity) and its connections to the micro level (the individual gas molecule). In a typical 
physics classroom, learners usually address these levels at different times. When attending to 
the micro level, the focus is, typically, on the exact calculation of the trajectories of two colliding 
particles. When attending to the macro level, the focus is on  “summary statistics” such as 
pressure, temperature, and energy. Yet, it is in the connection between these two primary 
levels of description that the explanatory power resides.  

 Two major factors enable students using GasLab to make the connection between these 
levels -- the replacement of symbolic computation with simulated experimentation and the 
replacement of “black-box” summary statistics with learner-constructed summary statistics. 
The traditional secondary physics curriculum segregates the micro- and macro- levels of 
description because the mathematics required to meaningfully connect them is thought to be 
out of reach of high school students. In the GasLab modeling toolkit, the formal mathematical 
techniques can be replaced with concrete experimentation with simulated objects. This 
experimentation enables learners to get immediate feedback on their theories and conjectures. 
In traditional curriculum learners are typically handed concepts such as pressure as “received” 
physics knowledge. The concept (and its associated defining formula) is, thus, for the learner, 
a “device” built by an expert, which the learner cannot inspect nor question. Learners do not 
come to see that this concept represents a summary statistic – a way of averaging or 
aggregating the behavior of many individual particles. Most fundamentally, the learner has no 
access to the design space of possibilities from which this particular summary statistic was 
selected. In the GasLab context, learners must construct their own summary statistics. As a 
result, the traditional pressure measure is seen to be one way of summarizing the effect of the 
gas molecules on the box, one way to build a gauge. The activity of designing a pressure 
measure is an activity of doing physics, not absorbing an expert’s “dead” physics.  

Example 3: MaterialSim - Materials and Beyond 
Materials science and engineering has grown considerably from its roots in experimental 
metallurgy. It is now a fundamental part of engineering education. Traditional methods for 
investigating properties of materials reflect the tools that were available in the nineteen-fifties: 
mathematical abstractions, geometrical modeling, approximations, and empirical data. These 
tools have inherent limitations both in their “power properties” for scientists but even more so in 
their “learnability properties” for students. 
 
In the past two decades, massive computing power has made a new and promising 
restructuration possible: computer simulation of individual molecules of the materials. 
Practicing material scientists have rapidly adopted this new approach. However, it has not as 
of yet migrated to the teaching of materials science, which still relies on the traditional 
methods. 
 
As a specific example, let us consider the phenomenon of “grain growth”. Most materials are 
composed of microscopic “crystals”. A crystal is just an orderly arrangement of atoms, a 
regular tri-dimensional grid in which each site is occupied by an atom. In Materials Science, 
scientists use the term “grain” to refer to such an arrangement. The notion of grain is 
fundamental to Materials Science and Materials Engineering. 
 
Among other properties, grain size determines how much a material will deform before 
breaking apart, which is one of the most important issues in engineering design. For example, 
a car built with steel with a wrong grain size could significantly increase the risk of serious 
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injury for the passengers. But grain size can change, too – high temperature is the main driving 
force. This phenomenon, known as grain growth, is exhaustively studied in Materials Science: 
small grains disappear while bigger ones grow (the overall volume is maintained). Airplanes 
turbines, for instance, can reach very high temperatures in flight – an incorrectly designed 
material could undergo “grain growth” and simply break apart. The following photographs 
(magnified 850x) show typical results. 

  
Figure 1: Metallic sample before and after grain growth (Blikstein & Tschiptschin, 1999) 
 
Burke (Burke, 1949) was one of the first to introduce a law to calculate grain growth and 
proposed that the growth rate would be inversely proportional to the average curvature radius. 
Burke’s law states that large grains (lower curvature radius) grow, while small grains (high 
curvature) shrink. The mathematical formulation of Burke’s law also reveals that, as grains grow, 
the growth rate decreases. A system composed of numerous small grains (see Figure 1, left) 
would have a very fast growth rate, while a system with just a few grains (see Figure 1, right) 
would change very slowly. In the beginning of the century, metallurgists believed grains to have 
a “maximum size” for a given temperature – but that was only due to the lack of tools to detect 
the very slow growth rate at the end of the process. However, even Burke’s description had its 
limitations. In order to make the math feasible, for example, Burke was led to consider grains as 
spheres with just one parameter to describe their size (the radius). For most practical 
engineering purposes, this approximation yields acceptable results – however, its practical 
efficacy does not necessarily mean that this approach is the best way to understand the 
phenomenon, nor to build on it to understand other phenomena in materials science. 
 
In the 1980s Anderson, Srolovitz et al. (Anderson, Srolovitz, Grest, & Sahni, 1984a, 1984b) 
proposed the now widely used theory for computer modeling of grain growth using an agent-
based approach. This kind of simulation not only made predictions faster and more accurate, but 
also allowed for a completely new range of applications. Researchers were no longer 
constrained by approximations or general equations, but could make use of more precise 
mechanisms and realistic geometries.  
 
Anderson et al. state that the classic rule-of-thumb for grain growth (“large grains grow, small 
grains shrink”) is not always valid, and that randomness plays an important role. Given the 
microscopic dimensions and small time scale of the phenomenon, practically the only way to 
visualize this new finding is through computer simulation. As a result of these “power properties”, 
this approach became widely adopted for the use of professionals. But, since at first glance, it 
would seem that since the situations for which it is a superior approach are not the simple cases, 
but the advanced ones used by professionals, that there was no reason to change instruction for 
novices in the field.  
 
However, an agent-based approach to grain growth has learnability properties that make it 
particularly suited for novice learners. The agent-based simulation of grain growth offers a 
different perspective. Its principle is the thermodynamics of atomic interactions – one of the 
extensible, transferable, anchor models. Consider the learning environment, MaterialSim 
(Blikstein & Wilensky, 2004a), which employs the agent-based approach to teach Materials 
Science. MaterialSim is a set of exploratory models built within the NetLogo (Wilensky, 1999) 
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environment. There are models for investigating crystallization, solidification, casting, grain 
growth and annealing. 
 

  
Figure 2. MaterialSim’s grain growth model (Blikstein & Wilensky, 2004b) 
 
 
MaterialSim represents a material as a hexagonal 2D matrix, in which each site corresponds to 
an atom and contains a numerical value representing its crystallographic orientation. Contiguous 
regions (containing the same orientation) represent the grains. The grain boundaries are 
fictitious surfaces that separate volumes with different orientations. MaterialSim’s grain growth 
algorithm is described below: 
 

 Each element (or agent) of the matrix has its free energy (Gi) calculated based on its 
present crystallographic orientation (Qi, represented by an integer) and its 
neighborhood (the more neighbors of differing orientation, the higher its free energy). 
Figure 3 (left side) shows the central agent with four different neighbors; hence the 
value of its initial free energy (Gf) is 4. 

 One new random crystallographic orientation is chosen for that agent (Qf), among the 
orientations of its neighbors. In this case, as observable in Figure 3, the current value 
of the central agent is “2”, and the new transition value is “1”. 

 The agent’s free energy is calculated again (Gf), with the new proposed crystallographic 
orientation (Qf=1). Error! Reference source not found. Figure 3 (right side) shows 
that there are only two different neighbors in the new situation, thus the final free 
energy (Gf) decreases to 2.  
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Figure 3: Initial and final free-energy calculations. Black and white arrows 
denote different or equal neighbors. 

 The two states are compared. The value that minimizes the free energy is chosen. In 
this case, Gi=4 and Gf=2, so the latter value is lower and constitutes a state of greater 
stability. Thus, the proposed change in orientation is accepted. 

From this basic model, one can understand what is going on in the material at the micro-level. 
Instead of having to use rules of thumb to predict what will happen to the grains, we can use this 
formal model to visualize and reason about the evolution of the material. For most initial 
conditions, we will indeed see a rule of thumb such as “large grains swallow others” obtain. But, 
we will also see how this process develops, how it emerges from the micro-level “decisions” of 
the molecules. And we will see that under some conditions the traditional rule of thumb will be 
violated.  

But the greater value of the agent-based approach lies in more than understanding this 
particular phenomenon. Once the basic model is set up, it is easy to explore a large set of 
configurations and to understand possible trajectories of the system. And because the 
representation system is composed of simple modifiable micro-rules rather than aggregate level 
equations, it is easy to modify them to explore a host of other phenomena. In our 
implementations of MaterialSim, we have seen students adapt the basic model to explore a 
diversity of materials science phenomena such as recrystallization, diffusion, interfacial energy, 
nucleation, solidification, and phase transformations. 

 
The agent-based restructuration of materials science enables students to reason about materials 
from the atom on up. Whereas traditionally, they employ heuristics and formulae given to them 
by authority, they are now able to author their own heuristics and formulae, derived from their 
modeling experience. Just as the restructuration of numerals enabled ordinary folks to do 
multiplication and division for themselves, the agent-based restructuration of materials science 
enables learners to set up experiments and author new models for themselves. 

 
 
 

 

Conclusion 
We have briefly laid out the theory of restructurations and called for careful consideration of 
computer-based, and in particular, agent-based restructurations of science content and 
instruction. We have presented three examples of such restructurations. We note that such 
restructurating is not confined to mathematics and natural science. Indeed, we suspect that 
agent-based restructurations of social science may give even grater leverage. We note that 
our own fields of education and learning sciences can be restructurated using agent-based 
approaches. To understand educational reform and phenomena such as curricular adoption, 
homework collaborations and the effects of educational policies, agent-based modeling can 
be a powerful tool. It enables us to study these phenomena as emergent from the 
interactions of the individuals rather than through properties of the aggregate populations. 
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